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Abstract

The objective was to determine the presence of carbapenem resistance genes and plasmid resistance to co-
listin (mcr-1) in bacteria isolated from Musca domestica in a garbage dump near a hospital in Lima, Peru. 
Bacteria with phenotypic resistance to carbapenemics were isolated on CHROMagar mSuperCARBATM 
medium and colistin resistance profiling was performed using the colistin disk elution method. Detection 
of blaKPC, blaNDM, blaIMP, blaOXA-48, blaVIM and mcr-1 genes was performed by conventional PCR. 
The antimicrobial susceptibility profile was determined using the automated MicroScan system. We found 
that 31/38 strains had phenotypic resistance to carbapenemics and 26/38 strains had phenotypic resistance 
to colistin with a minimum inhibitory concentration ≥ 4 µg/ml. Finally, we identified seven bacterial strains 
with carbapenem resistance genes (OXA-48 and KPC) and one bacterial strain with plasmid resistance to 
colistin (mcr-1). One Escherichia coli strain had three resistance genes: KPC, OXA-48 and mcr-1.

Keywords: Houseflies; Drug Resistance; Colistin; Carbapenem (source: MeSH NLM).

INTRODUCTION

The World Health Organization (WHO) warns about antimicrobial resistance (AMR) globa-
lly, due to the increase of multidrug resistant (MDR) bacteria and the decrease of therapeutic 
options. This causes approximately 700,000 deaths annually, with an estimated 10 million 
deaths per year by 2050, affecting socioeconomic and demographic factors (1). 

Carbapenems have been considered as “the last and most effective resource to treat 
bacterial infections” (2); however, the number of carbapenemase-producing bacteria, such 
as Klebsiella pneumoniae, Acinetobacter baumannii and Pseudomonas aeruginosa, has in-
creased (3). Several enzymes, such as Verona metallo-beta-lactamase (VIM), Klebsiella pneu-
moniae carbapenemase (KPC), Imipenemase (IMP), Oxacillinase (OXA-48), and New Delhi 
metallo-betalactamase (NDM), have been described since the 1990s with global dissemina-
tion, including Peru (4). The use of colistin as a last therapeutic resort has been hampered by 
the emergence of the resistance gene Mobile Colistin Resistance (mcr-1) in China in 2015, 
spreading through different origins (5). The first report in Peru related to the mcr-1 gene was 
made in Escherichia coli (E. coli) isolated from a urine culture sample (6). 
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Motivation for the study. The presence of antibiotic resistance 
genes in bacteria isolated from common flies is a potential 
public health hazard because it facilitates the presence and 
spread of antibiotic resistance genes in the environment.

Main findings. Thirty-eight bacterial strains identified in 14 
species were isolated from within the fly bodies, of which 
31 strains showed resistance to carbapenems and 26 strains 
showed resistance to colistin. Seven bacterial strains showed 
carbapenem resistance genes and one Escherichia coli strain 
had resistance to KPC, OXA-48 and mcr-1. 

Implications. This is the first report of antibiotic resistance 
genes in bacteria carried by common flies in Peru.

KEY MESSAGES

Houseflies are mechanical and biological vectors of bacteria, 
carrying up to 500,000 bacterial agents, including clinical patho-
gens (7). Zhang et al. detected colistin resistance genes (mcr-1 to 
mcr-3) in flies, with 34.1% of bacteria positive for mcr-1 (8). 

In Brazil, the blaNDM-1 gene was reported for the first 
time in Musca domestica in E. coli from an urban center in Rio 
de Janeiro (9). However, there are few reports on carbapenema-
se-producing and colistin-resistant bacteria carried by Musca 
domestica. There are no studies in Peru on vectors as a source 
of dissemination of resistance genes to this group of antibio-
tics. This study seeks to identify carbapenemase-producing 
genes and mcr-1 plasmid gene in bacteria isolated from flies 
from a garbage dump near a hospital in Lima, Peru.

THE STUDY
The assays of this study were conducted at the Biology Re-
search Laboratories of the Universidad Nacional Federico 
Villarreal and the Laboratory of Molecular Biology Research 
(LIBM) of the Universidad Peruana Unión during March to 
August 2023. 

Design and sample
We carried out an observational, cross-sectional, descripti-
ve study, in which 30 houseflies collected in April 2023 from 
a garbage dump near the EsSalud Level II Hospital in Ate Vi-
tarte, Lima, Peru (coordinates: -12.026535/-76.924063) were 
analyzed.

House fly collection and identification 
For the collection and identification of the flies, we used 
sticky plates with chicken as bait. Each fly was individually 
placed in 2-ml Eppendorf tubes and kept at 0 °C for 20 min 
to numb the flies and facilitate handling (9). They were then 
identified using Robert Moon’s taxonomic key (10).

Culture, bacterial identification and 
susceptibility profiling
Flies were washed with sterile 1X PBS to eliminate external 
bacteria. The flies were then triturated and the homogena-
te was resuspended in PBS and centrifuged for 10 minutes. 
Them, 1000 µl of the supernatant was removed and placed 
in tubes with 3 ml of trypticase soy broth and incubated at 
37 °C for 18 to 24 hours (8); 10 µl of broth was then removed 
with a calibrated loop and seeded on MacConkey agar pla-
tes. Bacterial identification was carried out by conventional 
biochemical tests: TSI, LIA, SIM, Citrate and Urea Agar. 

Antibiotic susceptibility profiling and species con-
firmation, for strains with resistance genes determined 
by PCR, was performed with the automated Microscan® 
(AutoScan-4) system following manufacturing instructions. 
Eighteen antimicrobials were included in the susceptibility 
panel: amikacin (AK), gentamicin (GEN), tobramycin 
(TOB), cefepime (FEP), cefuroxime (CFX), ceftazidime 
(CAZ), cefotaxime (FOX), ampicillin (AMP), ampicillin 
with sulbactam (AMP/SUL), amoxicillin with clavulanic 
acid (AMC), piperacillin with tazobactam (PIP/TZ), 
imipenem (IMI), meropenem (MEM), ertapenem (ETP), 
aztreonam (ATM), ciprofloxacin (CIP), levofloxacin (LEV), 
trimethoprim/sulfamethoxazole (SXT) and colistin (COL). 
The results were interpreted according to Clinical and 
Laboratory Standards Institute (CLSI) guidelines (11).

Phenotypic detection of carbapenemases and 
colistin resistance
Isolation of bacteria with phenotypic resistance to carbape-
nems was carried out on CHROMagarTM mSuperCAR-
BATM medium. To evaluate phenotypic resistance to colis-
tin, we used 10 µg colistin discs in Müller Hinton broth with 
cations, following the Clinical and Laboratory Standards 
Institute (CLSI) 2023 guidelines, considering resistance with 
a cut-off point ≥ 4 µg/ml (11).

Detection of blaKPC, blaNDM, blaIMP, bla-
OXA-48, blaVIM and mcr-1 genes
Finally, DNA was extracted using the immuPREP Bacteria 
DNA Kit (Analitikjena, Germany) and blaKPC (12), blaNDM (13), 
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blaIMP (14), blaOXA-48 (15), blaVIM (16) and mcr-1 (17) resistance ge-
nes were detected by Polymerase Chain Reaction in a T100™ ther-
mal cycler (Biorad, USA), following standardized protocols in the 
laboratory (LIBM); in the case of the mcr-1 gene, the Iglesias pro-
tocol was used (17). The primers used for this process are detailed in 
Table 1. Multidrug-resistant bacterial strains were used as positive 
controls, such as Klebsiella pneumoniae derived from ATCC BAA-
1705 (Microbiologics) for the KPC gene, Escherichia coli derived 
from ATCC BAA-2469 (Microbiologics) for the NDM gene. We 
also used strains provided by the National Reference Laboratory 
(Laboratorio Intrahospitalaria-LIH) of the National Institute of 
Health for each gene of interest (IMP, OXA-48, VIM and mcr-1) 
identified by PCR; and two negative controls: molecular grade wa-
ter and Escherichia coli ATCC 25922 (Microbiologics).

Electrophoresis
Amplification products were analyzed by 1.5% agarose gel 
electrophoresis (Cleaver Scientific) with SYBR Safe DNA 
Gel Stain as gel buffer, and 6X DNA Loading Dye as loading 
buffer. A 100 bp DNA(Trans) marker was used to assess 
DNA size, with a run at 100 V for 40 min.

Statistical analysis
IBM SPSS Statistics 25.0 software was used to present fre-
quency measures as percentages. Tables and figures were 
constructed using Microsoft Excel 2019.

Ethical considerations
Approval by an institutional ethics committee was not requi-
red since no patient data were used. 

FINDINGS

We identified 14 species from the 38 bacterial strains that 
were isolated, as detailed in Table 2. Klebsiella oxytoca was 
the most prevalent species (10/38, 23.7%) followed by Esche-
richia coli (7/38, 21.1%).

Thirty-one strains of bacteria with phenotypic resistance to 
carbapenems were isolated: Klebsiella oxytoca (10/31, 32.3%) 
and Escherichia coli (7/31, 22.6%) were the most prevalent. In 
addition, 26 strains showed phenotypic resistance to colistin; 
where Escherichia coli and Klebsiella oxytoca showed the highest 
resistance (5/26, 19.2%), all with cut-off point ≥4µg/ml.

Seven bacterial strains with carbapenem resistance genes 
(OXA-48 and KPC) isolated on CHROMagarTM mSuper-
CARBATM were detected, of which the blaKPC gene was 
found in Enterobacter aerogenes (1/2) and Proteus mirabilis 
(1/1) and the blaOXA-48 gene in Escherichia coli (1/7), Kleb-
siella oxytoca (1/10), Enterobacter cloacae (1/2) and Proteus 
vulgaris (1/2). In addition, one Escherichia coli strain (1/7) 
had the resistance genes blaKPC, blaOXA-48 and the colis-
tin-associated plasmid gene mcr-1, which would represent 
3.8% of 1/26 strains. Details of the mcr-1 gene are presented 
in Figure 1 (electrophoretic run) and Figure 2 (heat map, 
phenotypic and genotypic resistance profile).

Regarding the antibiotic resistance profile, all isolates 
with detected resistance genes were resistant to 1 or 2 groups 
of antibiotics, as detailed in Figure 2. On the other hand, 
bacterial resistance to trimethoprim/sulfamethoxazole was 
found on 100% of the samples, 85.7% were resistant to ampi-

Gene Primer Sequence 5’-3’ Amplicon Reference

KPC
F AACAAGGAATATCGTTGATG

916 bp (12)

R AGATGATTTTCAGAGCCCTTA

NDM
F AGCACACTTCCTATCTCGAC

512 bp (13)

R GGCGTAGTGCTCAGTGTC

IMP
F GGYGTTTWTGTTCATACWTCKTTYGA

404 bp (14)

R GGYARCCAAACCACTASGTTATCT

VIM
F AGTGGTGAGTATCCGACAG

261 bp (15)

R ATGAAAGTGCGTGGAGAC

OXA-48
F ATGCGTGTATTAGCCTTATCGG

438 bp (16)

R GCGTGGTTAAGGATGAACAC

MCR-1
F CGGTCAGTCCGTTTGTTC

309 bp (5)

R CTTGGTCGGTCTGTAGGG

F: Forward, R: Reverse, KPC: Klebsiella pneumoniae Carbapenemase, NDM: New Delhi metallo-β-lactamase, IMP: Imipenemase, VIM: Verona integron-encoded metal-
lo-beta-lactamase, OXA 48: Oxacillinase type 48 and MCR: Mobile Colistin Resistance.

Table 1. Primers used in this study.
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cillin and 42.9% to ciprofloxacin, while there was sensitivity 
and/or intermediate resistance to ertapenem, imipenem and 
meropenem in all seven strains. Resistance to colistin was 
also observed in Proteus strains; however, this resistance is 
natural to the bacteria.

DISCUSSION

Our results show that flies not only serve as dispersal vectors for 
different bacterial species, but also for bacteria carrying carbape-
nem-resistance genes to carbapenems and colistin (mcr-1). 

Table 2. Frequency of isolated bacteria, phenotypic and genotypic detection related to carbapenemase production and plasmid resistance to colistin.

ND: Not Detected, KPC: Klebsiella pneumoniae Carbapenemase, NDM: New Delhi metallo-β-lactamase, IMP: Imipenemase, VIM: Verona integron-encoded metallo-be-
ta-lactamase, OXA 48: Oxacillinase type 48 and MCR: Mobile Colistin Resistance.

Bacteria
Phenotype Genotype

Frequency 
(%)

mSuperCARBA TM

(%) 
Elution of colistin 
discs ≥4µg/ml (%)

Gene
blaKPC blaNDM blaOXA-48 blaVIM blaIMP mcr-1

Klebsiella oxytoca 10 (23.7) 10 (32.3) 5 (19.2) ND ND 1 ND ND ND
Escherichia coli 7 (21.1) 7 (22.6) 5 (19.2) 1 ND 2 ND ND 1
Enterobacter aerogenes 3 (7.9) 2 (6.5) 3 (11.5) 1 ND ND ND ND ND
Citrobacter freundii 3 (7.9) 2 (6.5) 2 (7.7) ND ND ND ND ND ND
Enterobacter cloacae 2 (5.3) 2 (6.5) 2 (7.7) ND ND 1 ND ND ND
Klebsiella pneumoniae 2 (5.3) 2 (6.5) 1 (3.8) ND ND ND ND ND ND
Proteus vulgaris 2 (5.3) 1 (3.2) 1 (3.8) ND ND 1 ND ND ND
Pseudomonas aeruginosa 2 (5.3) 1 (3.2) 1 (3.8) ND ND ND ND ND ND
Pseudomonas fluorescens 2 (5.3) 1 (3.2) 1 (3.8) ND ND ND ND ND ND
Acinetobacter baumannii 1 (2.6) 0 (0.0) 1 (3.8) ND ND ND ND ND ND
Morganella morganni 1 (2.6) 1 (3.2) 1 (3.8) ND ND ND ND ND ND
Proteus mirabilis 1 (2.6) 1 (3.2) 1 (3.8) 1 ND ND ND ND ND
Proteus penneri 1 (2.6) 0 (0.0) 1 (3.8) ND ND ND ND ND ND
Serratia marcescens 1 (2.6) 1 (3.2) 1 (3.8) ND ND ND ND ND ND
Total 38 (100.0) 31 (100.0) 26(100.0) 3 0 5 0 0 1

L: Ladder, S: Sample (HEAT24X), E coli, C+: E. coli Positive control, CN1: E. coli ATCC 25922 Negative control, 
NC2: Negative control, molecular H2O.

Figure 1. Electrophoresis results for the detection of the mcr-1 gene.
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Figure 2. Genotypic and phenotypic resistance profile of carbapenemase-producing bacteria.

Bacterial 
isolate code Bacterial species Bla and colistin 

genes

Antibiotic resistance profile
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In 2021, a study was conducted in Sudan, Africa on 300 
flies collected from slaughterhouses and hospitals, and reported 
that, after examining the external and internal bacteria of each 
fly, 283 bacteria were identified in hospital flies and 366 bacte-
ria in slaughterhouse flies; E. coli being the bacterium with the 
highest frequency of isolation (18). Despite the difference in the 
size of the bacterial sample isolated in our study, we detected 
32.2% of Klebsiella oxytoca and 22.6% of E. coli, all carbapene-
mase-producing; therefore, they are the bacterial species most 
frequently carried by Musca domestica.

In 2004 and 2005, 780 flies were collected in markets and 
garbage dumps in Lima and Callao (Peru), and Salmonella 
typhi, Shigella flexneri, Yersinia enterocolitica and entero-
pathogenic E. coli were identified (19). These results allowed 
the authors to point out the importance of flies as mecha-
nical vectors for the spread of bacteria in the environment. 
Our results also show E. coli as a bacterial isolate of Musca 
domestica that inhabit garbage dumps and that could also 
disperse resistance genes such as KPC, OXA-48 and mcr-1 
in the environment.

We used conventional PCR to identify carbapenema-
se resistance genes; KPC genes were detected in fly-borne 
E. coli, Enterobacter aerogenes and Proteus mirabilis. These 
genes were first identified in Latin America in Colombia in 
2004 (20) and in Peru in 2013 (21). OXA-48 genes were found in 
Klebsiella oxytoca, E. coli, Enterobacter cloacae, and Proteus 
vulgaris. These genes are prevalent in Klebsiella pneumoniae 
and other enterobacteria and have also been detected in Aci-
netobacter baumannii. In Peru in 2022, seven strains of bac-

teria carrying the OXA-48 gene were isolated from patients 
at the National Institute of Neoplastic Diseases (22).

In our study, a strain of E. coli with the mcr-1 gene that 
confers resistance to colistin was detected, a result similar 
to findings in China (8), India (23) and Peru (24). Bacteria carr-
ying carbapenemase-encoding genes and carrying the mcr-
1 gene in our study showed resistance to most antibiotics, 
except carbapenems and gentamicin.

There are no previous studies on the identification of 
antibiotic resistance genes in bacteria isolated from flies in 
Peru, which prevents comparative analysis. In addition, the 
exclusive use of the mcr-1 primer could have limited the de-
tection of other allelic variants, and the restricted availability 
of positive controls could have hindered the use of primers 
to identify these additional allelic variants (mcr-2 to mcr-
10) in the Peruvian context. The number of flies captured in 
this study could be considered a limitation to obtain more 
solid conclusions; however, since this is the first report of 
antibiotic resistance genes in bacteria isolated from Musca 
domestica in the country, it will serve as a starting point for 
future research.

In conclusion, our results show that Musca domestica can 
be considered as a potential disseminator of bacteria carrying 
antibiotic resistance genes, specifically genes for carbapene-
mases and mcr-1 for plasmid resistance to colistin. We rec-
ommend that more complex studies should be carried out to 
identify a greater number of resistance genes to different anti-
biotics, considering more than 300 flies per sampling area, as 
applied in the study carried out in China and India, and thus 
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be able to evaluate with greater certainty the role of the house 
fly as a disseminator of bacteria with antibiotic resistance and 
its possible implications for public health. 
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