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ABSTRACT

Objective. To identify the presence of the SARS-CoV-2 virus in wastewater from hospitals in Peru. Materials 
and methods. Water samples were collected from the effluents of nine hospitals in Peru during March and Sep-
tember 2022. SARS-CoV-2 was identified by using Illumina sequencing. Variant, lineage and clade assignments 
were carried out using the Illumina and Nextclado tools. We verified whether the SARS-CoV-2 variants obtained 
from wastewater were similar to those reported by the National Institute of Health of Peru from patients during 
the same period and region. Results. Eighteen of the 20 hospital wastewater samples (90%) provided sequences 
of sufficient quality to be classified as the Omicron variant according to the WHO classification. Among them, 
six (30%) were assigned by Nextclade to clades 21K lineage BA.1.1 (n=1), 21L lineage BA.2 (n=2), and 22B lin-
eages BA.5.1 (n=2) and BA .5.5 (n=1). Conclusions. SARS-CoV-2 variants were found in hospital wastewater 
samples and were similar to those reported by the surveillance system in patients during the same weeks and 
geographic areas. Wastewater monitoring could provide information on the environmental and temporal varia-
tion of viruses such as SARS-CoV-2.

Keywords:  Genomics, SARS-CoV-2; Wastewater; Sequencing; Wastewater-Based Epidemiological Monitoring 
(source: MeSH NLM).

INTRODUCTION

RNA viruses, such as Ebola, influenza, dengue, Zika, and SARS-CoV-2, evolved rapidly, steadily 
accumulating mutations in their genomes (1,2). This feature can be used to make epidemiological 
inferences and identify risk factors associated with transmission events occurring in suscepti-
ble populations (1,3). Since December 2019, a large number of SARS-CoV-2 genomes have been 
generated worldwide and deposited in public repositories (i.e., GISAID, Genbank), allowing us 
to track, almost in real time, the evolution of this virus (2-5). However, we only found studies on 
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Motivation for the study. To contribute to the surveillance 
of environmental samples from hospital effluents in order 
to achieve early warning of possible infectious disease 
outbreaks. 

Main findings. The Omicron variant of the COVID-19 
virus was detected in wastewater from hospitals in Puno, 
Cuzco and Cajamarca; these results are similar to the 
reports by the Peruvian National Institute of Health based 
on nasopharyngeal swab samples. 

Implications. The presence of the Omicron variant in 
hospital wastewater during the third wave of the pandemic 
should raise awareness of the treatment system before 
wastewater is discharged into the public sewer system.

KEY MESSAGES

transmission patterns in their local populations in a few Eu-
ropean and North American countries (6,7). 

Latin America has generated more than 100,000 geno-
mes, mainly from Brazil, Chile, Peru, Colombia, Ecuador, 
and Uruguay (2,5). For example, the Peruvian Institute of 
Health (INS) in collaboration with the National Center for 
Epidemiology, Prevention and Disease Control of the Minis-
try of Health (CDC-MINSA) in Peru, have generated more 
than 54,506 SARS-CoV-2 genomes by 2024 (https://gisaid.
org/) confirming the circulation of a myriad of variants since 
the onset of the COVID-19 pandemic (i.e., lambda, gamma, 
alpha, delta, mu, zeta, epsilon, etc. and others (https://nexts-
train.org/ncov/gisaid/21L/south-america/1m) (8-11).

Complementary to clinical detection, environmental 
surveillance of viruses, especially those related to viabili-
ty and potential infectivity such as SARS-CoV-2, could be 
a useful tool to predict timely disease outbreaks and issue 
early warnings by health authorities (12,13). In that sense, was-
tewater samples are a noninvasive and inexpensive source 
of information to investigate the spread of different genetic 
variants of SARS-CoV-2 within a community (14,15). Mass se-
quencing and metagenomic analysis would allow us to de-
tect the virus and identify circulating SARS CoV-2 variants 
at the same time.

In this study, we aimed to detect, by next-generation 
sequencing, SARS-CoV-2 variants from different hospital 
effluents in Peru during March and September 2022. The 
recovered data were matched with circulating variants mo-
nitored by the Peruvian INS surveillance system.

MATERIALS AND METHODS

Procedures
Samples were collected from wastewater of nine hospitals lo-
cated in six regions of Peru (Lima=3, San Martin=1, Puno=2, 
Cusco=1, Cajamarca=1, La Libertad=1) between March and 
September 2022 (Figure 1). Each hospital was geo-referenced 
and two samples were collected at each point during a one-
hour period. Wastewater samples were passively collected in 
sterile glass bottles (1000 mL) and then labeled. Samples were 
transported under cold chain conditions at 8 °C and proces-
sed within 24 hours. Once the extraction of nucleic acids was 
completed, they were stored at -20°C in the molecular biolo-
gy laboratory of the Universidad Peruana Unión, following 
the recommendations by the U.S. CDC (https://www.cdc.
gov/nwss/wastewater-surveillance.html).

Sample preparation and pretreatment 
We followed the protocol of the Wizard® Enviro Wastewater 
FB236 total nucleic acid kit (Promega Corp, USA). Briefly, 
a total of 40 mL of homogenized wastewater samples were 
treated with 500 μL of proteinase K, mixed by inversion and 
incubated for 30 min at room temperature, then centrifuged 
at 3000 g for 10 min, following the manufacturer’s instruc-
tions. Subsequently, we added 6 mL of binding buffer 1 and 
then 0.5 mL of binding buffer 2 (both included in the same 
kit) and mixed by inversion. Finally, 24 mL of isopropanol 
(Sigma Aldrich Co., St. Louis, MO, USA) was added to each 
tube. The mixture was passed through the PureYieldTM 
Minicolumn according to the same protocol. Finally, the 
columns were subjected to a vacuum system, and the total 
content was finally eluted with 1000 μL of preheated RNase/
DNase-free water (60 °C).

RNA purification and electrophoresis analysis
The eluate obtained in the previous step was purified to ob-
tain total RNA using silicaPureYieldTM mini-columns, also 
provided by Wizard® Enviro Wastewater FB236 Total Nu-
cleic Acid Kit (Promega Corp, USA), following the manufac-
turer’s instructions. The total eluate content was run through 
the entire column, washed and finally recovered with 70 μL 
of RNase/DNase-free water, at 11000 g for one minute, fo-
llowing the manufacturer’s instructions. RNAs were quanti-
fied by absorbance at 260 nm using a Nanodrop (16) and inte-
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Figure 1. Hospitals by region sampled between March and September 2022 in Peru.
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grity was visualized on 1% agarose gels (Sigma Aldrich Co, 
St. Louis, MO, USA) stained with Sybr gold. 

cDNA and library preparation and NGS 
Total RNA was retrotranscribed to cDNA using random pri-
mers, and the library was prepared using the Illumina CO-
VID Seq Kit RUO (Illumina San Diego, California, USA). 
The MiSeq kit (Illumina®) was used for sequencing accor-
ding to the manufacturer’s instructions. Sequencing was 
outsourced and performed by Genlab del Perú S.A.C.

Bioinformatic analysis 
The quality of the readings was evaluated using software 
implemented in the Illumina® tool package, with additio-
nal analysis performed by Nextclade and Pangolin softwa-
re (17,18). These two programs allowed us to identify which 
variants and lineages were circulating in Peru. Additionally, 
the findings (variants and lineages) were compared with 
those from clinical samples tracked by the INS of Peru du-
ring the same period and geographic area (https://web.ins.
gob.pe/es/covid19/secuenciamiento-sars-cov2 ).

RESULTS

Sequences were obtained from each sample, gathering 20 
sequences in total. However, we initially assessed their 
quality with the Pangolin and Nextclade programs, and all 
were discarded by the first program as they were labeled as 
ambiguous content or failure, but the second program re-
trieved six results. As shown, all sequences with sufficient 
quality were assigned to the Omicron variant according to 
the World Health Organization (WHO) label. However, the 
lineages were diverse within the three clades found: the 21K 
clade with the BA.1.1 lineage (n=1); the 21L clade with the 
BA.2 lineage (n=2); and the 22B clade with the BA.5.1 (n=2) 
and BA.5.5 (n=1) lineages (Table 1).

When we compared our results with the samples obtai-
ned from patients monitored by the INS during the same 
period, we found a similar presence in both the variant, all 
were Omicron, the same variant circulating in the Peruvian 
population, and the lineages. Only BA.5.5, was not reported 
by INS for the area and time of sampling in the Puno region 
(Table 1). 

https://doi.org/10.17843/rpmesp.2024.412.13484
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All 14 sequences, except one (WW20) discarded by Ne-
xtclade software due to its low quality, were analyzed by Illu-
mina tools and appeared to belong to Omicron clade 19A. 
However, this result could not be considered robust (the other 
tools had discarded them), but somehow it also showed the 
underlying relationship with the Omicron variant.

DISCUSSION

The COVID-19 pandemic in Peru was characterized by a 
high number of cases, deaths per million population, and 
total excess deaths compared with other South American 
countries (19). Several causes have been suggested to explain 
these figures, but they may have been caused by a leaderless 
and uncoordinated public health strategy, as well as to the 
lack of infrastructure (20,21). Paradoxically, Peru was the first 
country in Latin America to impose strict containment in 
2020, achieving a rapid improvement of the first wave of ca-
ses in June 2020 (22). However, the relaxation of restrictions 
in August 2020 was associated with a second wave later that 
year (21). The new peak of cases between December 2020 and 
February 2021 again forced restriction measures and targe-
ted quarantines in areas with the highest incidence of cases. 
One year later, the Peruvian Ministry of Health announced 
the third wave, which started in January 2022 and lasted up 
to April 2022 (23,24). This study took place in the context of 
this third wave and aimed to detect SARS-CoV-2 variants 
from different hospital effluents in Peru during the period 
from March to September 2022 and covered health facilities 
on the coast, jungle, and highland regions, showing genetic 
material found in the analyzed samples, which would indi-
cate that the aforementioned lineages would be circulating 
in that time period.

SARS-CoV-2 variants have been detected from respira-
tory samples in Peru, some of them are variants of interest 
(VOI) and other variants of concern (VOC), according to 
the CDC and WHO classification based on their impact on 
public health (25,26). Thus, the Lambda and Gamma lineages 
circulated during the second wave of the pandemic in Peru. 
Lambda focused on the coastal and highland regions, while 
Gamma focused on the jungle region (Loreto) (11,27). In fact, 
the Lambda variant (C.37) was detected worldwide for the 
first time in Peru in August 2020. On the other hand, the 
third wave was dominated by lineages descended from Omi-

cron BA.1 (B.1.1.529); this variant was the only one found in 
our study. In addition, the descendant lineages found in the 
wastewater samples matched some of those detected by INS 
in patients from the same geographic area and week of sam-
pling. As previously reported by other studies, detection of 
SARS-CoV-2 in wastewater may reflect the spread of this vi-
rus in the community (28,29). In addition, this approach allows 
us to observe undetected transmission of SARS-CoV-2 
variants (30). In that regard, we found an Omicron lineage, 
BA.5.5, which was not reported by INS for the sampling lo-
cations and period, but could have been circulating.

The main limitation of our study was the quality of the 
samples, which forced us to discard a considerable number of 
samples. Low-quality sequences, in addition to the difficulty 
in estimating relative lineage abundance in complex samples, 
are not uncommon when conducting wastewater surveillance 
(31). The low prevalence of different lineages in these samples 
is probably the main reason (32), which would also explain our 
results. Besides, the timing of sampling did not coincide with 
the large peak of cases reported during the third wave and 
where many lineages were detected in the population.

The strength of the study lies in the fact that it is one of the 
first studies to report SARS-CoV-2 variants in hospital was-
tewater in Peru. Genomic surveillance based on sequencing 
provides us with this important information to learn more 
about the ongoing transmission of the virus in the commu-
nity. This study involved different researchers who are part of 
the antimicrobial resistance network and who have contribu-
ted their experience and knowledge to achieve the proposed 
objectives; the support of different actors and institutions was 
necessary. Despite the limitations, our study is another exam-
ple of how wastewater sequencing analysis could be useful as 
a counterpart for viral surveillance in patients, especially in 
countries where clinical testing is still a challenge. 

In conclusion, the presence of SARS-CoV-2 variants in hos-
pital wastewater samples is evident and were similar to those 
reported by the surveillance system in patients during the same 
weeks and geographic areas in Peru. Wastewater monitoring 
contributes to provide information on the environmental and 
temporal variation of viruses such as SARS-CoV-2.
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Table 1. SARS-CoV-2 lineage sequences from wastewater samples in nine hospitals in Peru, 2022.

* Assignment according to the National Institute of Health of Peru for the location and week of sampling. It was not possible to recover the data for Puno during week 24 
(06/16/2022), so the data shown is from July 2022.

Hospital
(Region)

Sample 
No.

Georeferentiation Clinical surveillance data Wastewater sample

Latitude Longitude Epidemiological 
week *

Variants and predominant 
lineages of SARS-CoV-2 

(WHO)*

SARS-CoV-2 
variant (assignment 

of the following 
clade)

Linage Clade

 Carlos Monge 
Medrano Hospital 
(Puno)

1
-15.48103444 -70.12079352

24
Omicron, Linages BA.2.12.1, 

BA.4.1, BA.5.1, BA.5.2, BA.4.6, 
BA.5.1.8

NA

2 35
Omicron, Linages BA.5, BA.5.1, 

BA.5.2.1, BA.5.2, BA.5.6
Omicron BA.5.1 22B

Regional Teaching 
Hospital of Trujillo 
(La Libertad)

3

-8.105569975 -79.03658615

24
Omicron, Linages BA.2, BA.2.5, 
BA.4, BA.5, BA.2.12.1, BA.4.1, 

BA.5.1, BA.2.9
NA

4 28
Omicron, Linages BA.2, BA.4, 

BA.2.12.1, BA.4.1, BA.5.1, BA.5.2, 
BA.4.6

NA

Ate Vitarte 
Emergency Hospital 
(Lima)

5
-12.02584008 -76.91729777 25

Omicron, Linages BA.2, BA.4, 
BA.5, BA.2.12.1

NA

6   NA
7   NA

Huaycan Hospital 
(Lima)

8 -12.01544188 -76.82024846 19
Omicron, Linages BA.1, BA.1.1, 

BA.2, BA.4, BA.5, BA.2.12.1
NA

9         NA

Cusco Regional 
Hospital 
(Cusco)

10 -13.52354454 -71.95475727 32

Omicron, Linages BA.2, BA.4, 
BA.5, BA.5.2, BA.2.12.1, BA.4.1, 
BA.5.1, BA.5.1.1, BA.5.2.1, BE.1, 

BA.4.6, BA.5.6, BA.5.6.1

Omicron BA.2 21L

11         Omicron BA.2 21L

Juliaca American 
Clinic (Puno)

12
-15.49743882 -70.13242485

35
Omicron, Linages BA.5, BA.5.1, 

BA.5.2.1, BA.5.2, BA.5.6
Omicron BA.5.5 22B

13     Omicron BA.5.1 22B

Cajamarca Regional 
Hospital 
(Cajamarca)

14
-7.183099124 -78.48777246 34

Omicron, Linages BA.4, BA.5, 
BA.4.1, BA.5.1, BA.5.2.1, BA.5.2, 

BA.4.6, BA.5.1.3, BA.5.6, BA.5.1.3, 
BA.5.6.1

Omicron BA.1.1 21K

15   NA

Sergio Bernales 
Hospital (Lima)

16 -11.91352635 -77.03915675 10
Omicron, Linages BA.1, BA.1.1, 

BA.2
NA

17         NA

Tarapoto Hospital 
(San Martín)

18

-6.473262643 -6.473262643 34

Omicron, Linages BA.4.1, BA.5.1, 
BA.5.1.1, BA.5.2.1, BA.5.6.1

NA

19   NA

20   NA
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