Resistencia a cefalosporinas y quinolonas en Escherichia coli aisladas de agua de riego en río Rímac de Lima Este, Perú
DOI:
https://doi.org/10.17843/rpmesp.2024.412.13246Palabras clave:
Escherichia coli, resistencia a antibióticos, agua de riego, productoras de BLEE, E. coli diarreagénicaResumen
Objetivos. Evaluar la presencia y sensibilidad a los antimicrobianos de cepas de Escherichia coli aisladas de 24 muestras de agua de riego del río Rímac de Lima Este, Perú. Materiales y métodos. Las cepas de E. coli fueron identificadas por PCR. La susceptibilidad a los antibióticos se procesaron por el método de difusión en disco. Los genes implicados en betalactamasas de espectro extendido (BLEE), quinolonas y virulencia se determinaron por PCR. Resultados. Todas las muestras superaron los límites permisibles establecidos en las Normas de Calidad Ambiental para el riego de hortalizas. De los 94 aisaldos, el 72,3% mostró resistencia al menos a un antibiótico, el 24,5% eran multirresistentes (MDR) y el 2,1% extremadamente resistentes. Los mayores porcentajes de resistencia se observaron para ampicilina-sulbactam (57,1%), el ácido nalidíxico (50%), trimetoprim-sulfametoxazol (35,5%) y ciprofloxacino (20,4%). Entre los aislados, el 3,2% presentaba fenotipo BLEE relacionado con el gen bla CTX-M-15. Los mecanismos transferibles de resistencia a las quinolonas, qnrB fueron más frecuentes (20,4%), y el 2,04% tenían el qnrS. Se calcularon que el 5,3% eran E. coli diarreagénicas y de estas, el 60% eran E. coli enterotoxigénicas, el 20% E. coli enteropatógenas y el 20% E. coli enteroagregantes. Conclusiones. Los resultados muestran la existencia de patotipos diarreogénicos en el agua utilizada para el riego de productos frescos y destaca la presencia de E. coli productores de BLEE y MDR, demostrando el papel que juega el agua de riego en la diseminación de genes de resistencia en el Perú.
Descargas
Referencias
Pons MJ, de Toro M, Medina S, Sáenz Y, Ruiz-Blázquez J. Antimicrobials, antibacterial resistance and sustainable health. South Sustainability. 2020; 1(1), e001 doi: 10.21142/SS-0101-2020-001.
Marti E, Variatza E, Balcazar JL. The role of aquatic ecosystems as reservoirs of antibiotic resistance. Trends Microbiol.2014;22(1):36-41. doi: 10.1016/j.tim.2013.11.001.
Freitas DY, Araújo S, Folador ARC, Ramos RTJ, Azevedo JSN, Tacão M, et al. Extended Spectrum Beta-Lactamase-Producing Gram-Negative Bacteria Recovered From an Amazonian Lake Near the City of Belém, Brazil. Front Microbiol.2019; 28;10:364. doi: 10.3389/fmicb.2019.00364.
Larsson DGJ, Flach CF. Antibiotic resistance in the environment. Nat Rev Microbiol.2022;20(5):257-269. doi: 10.1038/s41579-021-00649-x.
Duarte AC, Rodrigues S, Afonso A, Nogueira A, Coutinho P. Antibiotic Resistance in the Drinking Water: Old and New Strategies to Remove Antibiotics, Resistant Bacteria, and Resistance Genes. Pharmaceuticals (Basel). 2022;24;15(4):393. doi: 10.3390/ph15040393.
Blaustein RA, Shelton DR, Van Kessel JA, Karns JS, Stocker MD, Pachepsky YA. Irrigation waters and pipe-based biofilms as sources for
antibiotic-resistant bacteria. Environ Monit Assess.2016; 188(1):56. doi: 10.1007/s10661-015-5067-4.
Li Y, Zhang C, Mou X, Zhang P, Liang J, Wang Z. Distribution characteristics of antibiotic resistance bacteria and related genes in urban recreational lakes replenished by different supplementary water source. Water Sci Technol. 2022; 85(4):1176-1190. doi: 10.2166/wst.2022.018
Jiao YN, Chen H, Gao RX, Zhu YG, Rensing C. Organic compounds stimulate horizontal transfer of antibiotic resistance genes in mixed wastewater treatment systems. Chemosphere.2017; 184:53-61. doi: 10.1016/j.chemosphere.2017.05.149.
Gupta S, Graham DW, Sreekrishnan TR, Ahammad SZ. Effects of heavy metals pollution on the co-selection of metal and antibiotic resistance in urban rivers in UK and India. Environ Pollut. 2022; 28:119326. doi: 10.1016/j.envpol.2022.119326.
Poirel L, Kämpfer P, Nordmann P Chromosome-encoded Ambler class A beta-lactamase of Kluyvera georgiana, a probable progenitor of a subgroup of CTX-M extended-spectrum beta-lactamases. Antimicrob Agents Chemother. 2002; 46(12):4038-40. doi: 10.1128/AAC.46.12.4038-4040.2002
Riego MdDAy. Resultado del monitoreo de la calidad del agua en la cuenca del río Rímac: Informe técnico. Informe Técnico. Lima: Autoridad Nacional del Agua, Dirección de Gestión de Calidad de los Recursos Hídricos; 2012.
Castillo AK, Espinoza K, Chaves AF, Guibert F, Ruiz J, Pons MJ. Antibiotic susceptibility among non-clinical Escherichia coli as a marker of antibiotic pressure in Peru (2009-2019): one health approach. Heliyon.2022; 9;8(9):e10573. doi: 10.1016/j.heliyon.2022.e10573.
Foudraine DE, Strepis N, Stingl C, Ten Kate MT, Verbon A, Klaassen CHW, et al. Exploring antimicrobial resistance to beta-lactams, aminoglycosides and fluoroquinolones in E. coli and K. pneumoniae using proteogenomics. Sci Rep. 2021; 14;11(1):12472. doi: 10.1038/s41598-021-91905-w.
Palma N, Pons MJ, Gomes C, Mateu J, Riveros M, García W, et al. Resistance to quinolones, cephalosporins and macrolides in Escherichia coli causing bacteraemia in Peruvian children. J Glob Antimicrob Resist.2017; 11:28-33. doi: 10.1016/j.jgar.2017.06.011.
DIGESA. Protocolo para la toma de muestra. Resolución Directoral. Lima: Ministerio de Salud; 2016.
Bej AK, DiCesare JL, Haff L, Atlas RM. Detection of Escherichia coli and Shigella spp. in water by using the polymerase chain reaction and gene probes for uid. Appl Environ Microbiol. 1991;57(4):1013-7. doi: 10.1128/aem.57.4.1013-1017.
Clinical and Laboratory Standards Institute (CLSI) Performance Standards for Antimicrobial Susceptibility Testing. 31st ed. CLSI supplement M100 (ISBN 978-1-68440-105-5. Clinical and Laboratory Standards Institute, USA, 2021.
Magiorakos AP, Srinivasan A, Carey RB, Carmeli Y, Falagas ME, Giske CG, et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect.2012; 18:268-81. doi: 10.1111/j.1469-0691.2011.03570.
Guion CE, Ochoa TJ, Walker CM, Barletta F, Cleary TG. Detection of diarrheagenic Escherichia coli by use of melting-curve analysis and
real-time multiplex PCR. J Clin Microbiol, 2008; 46, 5, 1752–1757. doi: 10.1128/JCM.02341-07.
Pons MJ, Vubil D, Guiral E et al. Characterisation of extended-spectrum β-lactamases among Klebsiella pneumoniae isolates causing bacteraemia and urinary tract infection in Mozambique. J Glob Antimicrob Resist. 2015; 3(1):19-25. doi: 10.1016/j.jgar.2015.01.004.
Karkman A, Pärnänen K, Larsson DGJ. Fecal pollution can explain antibiotic resistance gene abundances in anthropogenically impacted environments. Nat Commun. 2019; 8;10(1):80. doi: 10.1038/s41467-018-07992-3.
Vega-Sánchez V, Talavera-Rojas M, Barba-León J, Zepeda-Velázquez AP, Reyes-Rodríguez NE. La resistencia antimicrobiana en Escherichia coli aislada de canales y heces bovinas de rastros en el centro de México. Rev Mex Cienc Pecu. 2020;11(4): 991-1003. doi: 10.22319/rmcp.v11i4.5073.
Ambiente Md. Aprueban Estándares de Calidad Ambiental (ECA) para Agua y Establecen Disposiciones Complementarias. DS N°
-2017-MINAM. Lima: MINAM; 2017
Riego MdDAy. Resultado del monitoreo de la calidad del agua en la cuenca del río Rímac: Informe técnico. Informe Técnico. Lima: Autoridad Nacional del Agua, Dirección de Gestión de Calidad de los Recursos Hídricos; 2012.
Graczyk Z, Graczyk TK, Naprawska A. A role of some food arthropods as vectors of human enteric infections. Cent Eur J Biol 2011; 6, 145–149. doi: 10.2478/s11535-010-0117-y.
Escobedo C, Ariza E. Nivel de contaminación fecal en hortalizas expedidas en mercados de Huanuco y su relación en el riego con aguas residuales no tratadas. Investigación Valdizana; 2014; 8(2).
Rojas-Aedo J, Morales O, Jara M, Morales O, Martínez MC. Detección de Salmonella spp. y E. coli diarreogénico en cursos de aguas superficiales de la Región Metropolitana por Ultrafiltración Tangencial. In Conference: Sociedad de Microbiología de Chile Chile. 2013; 1.
Ochoa TJ, Ecker L, Barletta F, Mispireta ML, Gil AI, Contreras C. Age-related susceptibility to infection with diarrheagenic Escherichia coli among infants from Periurban areas in Lima, Peru. Clin Infect Dis. 2009 1;49(11):1694-702. doi: 10.1086/648069.
Deblonde T, Cossu-Leguille C, Hartemann P. Emerging pollutants in wastewater: a review of the literature. Int J Hyg Environ Health.
;214(6):442-8. doi: 10.1016/j.ijheh.2011.08.002.
Duffy EA, Lucia LM, Kells JM, Castillo A, Pillai SD, Acuff GR. Concentrations of Escherichia coli and genetic diversity and antibiotic resistance profiling of Salmonella isolated from irrigation water, packing shed equipment, and fresh produce in Texas. J Food Prot.200568(1):70-9. doi: 10.4315/0362-028x-68.1.70.
Díaz-Gavidia C, Barría C, Weller DL, Salgado-Caxito M, Estrada EM, Araya A. Humans and Hoofed Livestock Are the Main Sources of Fecal Contamination of Rivers Used for Crop Irrigation: A Microbial Source Tracking Approach. Front Microbiol. 2022; 30;13:768527. doi: 10.3389/fmicb.2022.768527.
Nnadozie CF, Odume ON. Freshwater environments as reservoirs of antibiotic resistant bacteria and their role in the dissemination of antibiotic resistance genes. Environ Pollut. 2019; 254(Pt B):113067. doi: 10.1016/j.envpol.2019.11306.
Fahrenfeld N, Ma Y, O’Brien M, Pruden A. Reclaimed water as a reservoir of antibiotic resistance genes: distribution system and irrigation implications. Front Microbiol. 2013; 28;4:130. doi: 10.3389/fmicb.2013.00130.
Riaz L, Mahmood T, Khalid A, Rashid A, Ahmed-Siddique MB, Kamal A, et al. Fluoroquinolones in the environment: A review on their abundance, sorption and toxicity in soil. Chemosphere.2018; 191:704-720. doi: 10.1016/j.chemosphere.2017.10.09.
Pons M, Mosquito S, Gomes C, Del Valle LJ, Ochoa TJ, Ruiz J. Analysis of quinolone-resistance in commensal and diarrheagenic Escherichia coli isolates from infants in Lima, Peru. Trana R Soc Trop Med Hyg. 2014; 108(1):22-8. doi: 10.1093/trstmh/trt106.
Pons M, Mosquito S, Ochoa T. Niveles de Resistencia a antimicrobianos, en especial a quinolonas, en cepas de Escherichia coli comensales en niños de la zona periurbana de Lima, Perú. Rev Peru Med Exp Salud Pública. 2012;29(1):82-6.
Miranda CD, Concha C, Godoy FA, Lee MR. Aquatic Environments as Hotspots of Transferable Low-Level Quinolone Resistance and Their Potential Contribution to High-Level Quinolone Resistance. Antibiotics. 2022; 11(11):1487. doi: 10.3390/antibiotics11111487.
Kraupner N, Ebmeyer S, Bengtsson-Palme J, Fick J, Kristiansson E, Flach CF, et al. Selective concentration for ciprofloxacin resistance in Escherichia coli grown in complex aquatic bacterial biofilms. Environ Int. 2018;116:255-268. doi: 10.1016/j.envint.2018.04.029.
Dong Z, Wang J, Wang L, Zhu L, Wang J, Zhao X. Distribution of quinolone and macrolide resistance genes and their co-occurrence with heavy metal resistance genes in vegetable soils with long-term application of manure. Environ Geochem Health. 2021: 24. doi: 10.1007/s10653-021-01102-x.
Palacios Farias, SE. 2019 “Frecuencia de Escherichia coli resistente a antibióticos aisladas del agua del río Piura, Perú en un tramo de la ciudad”. Universidad Nacional de Piura. http://repositorio.unp.edu.pe/handle/UNP/1957
Montero L, Irazabal J, Cardenas P, Graham JP, Trueba G. Extended-Spectrum Beta-Lactamase Producing-Escherichia coli Isolated From Irrigation Waters and Produce in Ecuador. Front Microbiol. 2021; 4;12:709418. doi: 10.3389/fmicb.2021.709418. Erratum in: Front Microbiol. 2022 Jun 14;13:926514. PMID: 34671324.
Descargas
Publicado
Número
Sección
Licencia
Derechos de autor 2024 Mónica Huamán Iturrizaga, Gina Salvador-Luján, Liliana Morales, Jeanne Alba Luna, Lino Velasquez Garcia, Julio Daniel Pacheco Perez, Maria J. Pons
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.