Clonal diversity of carbapenemase-producing Pseudomonas aeruginosa isolated from clinical samples in a third level hospital in Peru
DOI:
https://doi.org/10.17843/rpmesp.2025.421.13818Keywords:
Pseudomonas aeruginosa, Metallo-β-lactamases, Molecular Typing, CarbapenemasesAbstract
Pseudomonas aeruginosa is an opportunistic pathogen associated with health care infections, it has high levels of antimicrobial resistance and is associated with hospital outbreaks. Early outbreak detection is a usual problem in hospitals, therefore, this study aimed to assess the clonal relationship of carbapenemaseproducing P. aeruginosa in a tertiary hospital in Lima, Peru. Twenty-four metallo β-lactamase-producing P. aeruginosa strains isolated from hospitalized patients were collected. The clonal relation was determined using the REP-PCR technique. REP-PCR band profiles were normalized, analyzed and combined using BioNumerics version 7.6 software. Molecular identification showed 19 different profiles and four clonal groups. We determined polyclonality among isolates. We did not find clonal dissemination among the
metallo-β-lactamase-producing P. aeruginosa strains circulating in the hospital.
Downloads
References
Gual-de-Torrella A, López-Causape C, Alejo-Cancho I, Rojo-Molinero E, Sanchez-García G, Cortés-Lara S, et al. Molecular characterization of a suspected IMP-type carbapenemase- producing Pseudomonas aeruginosa outbreak reveals two simultaneous outbreaks in a tertiary-care hospital. Infect Control Hosp Epidemiol. 2023;44(11):1801-1808. doi: 10.1017/ice.2023.75.
Vega AD, DeRonde K, Jimenez A, Piazza M, Vu C, Martinez O, et al. Difficult-to-treat (DTR) Pseudomonas aeruginosa harboring Verona-Integron metallo-β-lactamase (blaVIM): infection management and molecular analysis. Antimicrob Agents Chemother. 2024;68(5):e0147423.
doi: 10.1128/aac.01474-23.
National Center for Emerging and Zoonotic Infectious Diseases (U.S.). Division of Healthcare Quality Promotion. Division of Healthcare Quality Promotion. COVID-19: U.S. Impact on Antimicrobial Resistance, Special Report 2022. [Internet]. U.S. Department of Health and Human Services, CDC; 2022 [consultado el 10 de octubre de 2024]. Disponible
en: https://www.cdc.gov/drugresistance/covid19.html.
Hammoudi HD, Ayoub MC. The Intriguing Carbapenemases of Pseudomonas aeruginosa: Current Status, Genetic Profile, and Global Epidemiology. Yale J Biol Med. 2022;95(4):507-515. eCollection 2022 Dec. Disponible en: https://pubmed.ncbi.nlm.nih.gov/36568831/.
López-Hernández I, López-Cerero L, Fernández-Cuenca F, Pascual Á. El papel del laboratorio de microbiología en el diagnóstico de infecciones por bacilos gramnegativos multirresistentes. Importancia de la determinación de mecanismos de resistencias. Med Intensiva (Engl Ed). 2022;46(8):455-464. doi: 10.1016/j.medine.2022.05.003.
Abbassi Ghaleh Sorkh M, Shokoohizadeh L, Rashidi N, Tajbakhsh E. Molecular Analysis of Pseudomonas aeruginosa Strains Isolated from Burn Patients by Repetitive Extragenic Palindromic-PCR (rep-PCR). Iranian Red Crescent Medical Journal (IRCMJ), 2024; 19(4): 1-5. doi: 10.5812/ircmj.43508.
Rodrigues YC, Furlaneto IP, Maciel AHP, Quaresma AJPG, de Matos ECO, Conceição ML, et al. High prevalence of atypical virulotype and genetically diverse background among Pseudomonas aeruginosa isolates from a referral hospital in the Brazilian Amazon. PLoS ONE. 2020;15(9): e0238741. doi: 10.1371/journal.pone.0238741.
Salvador-Luján G, García-de-la-Guarda R, Gonzales-Escalante E. Caracterización de metalo-β-lactamasas en aislados clínicos de Pseudomonas aeruginosa recuperados de pacientes hospitalizados en el Hospital Militar Central. Rev Peru Med Exp Salud Publica. 2018;35(4): 363-641. doi: 10.17843/rpmesp.2018.354.3755.
CLSI. Performance Standards for antimicrobial susceptibility testing 26rd ed. CLSI supplement M100 Wayne, PA. Clinical and Laboratory standars Institute; 2016.
Magiorakos AP, Srinivasan A, Carey RB, Carmeli Y, Falagas ME, Giske CG, et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect. 2012;18(3):268-81. doi: 10.1111/j.1469-0691.2011.03570.x.
Kadri SS, Adjemian J, Lai YL, Spaulding AB, Ricotta E, Prevots DR, et al. National Institutes of Health Antimicrobial Resistance Outcomes Research Initiative (NIH–ARORI). Difficult-to-Treat Resistance in Gram-negative Bacteremia at 173 US Hospitals: Retrospective Cohort Analysis of Prevalence, Predictors, and Outcome of Resistance to All First-line Agents. Clin Infect Dis. 2018;2867(12):1803-1814. doi: 10.1093/cid/ciy378.
Versalovic J, Koeuth T, Lupski JR. Distribution of repetitive DNA sequences in eubacteria and application to fingerprinting of bacterial genomes. Nucleic Acids Res. 1991; 19(24):6823-6831. doi: 10.1093/nar/19.24.6823.
Rodas AM, Ferrer S, Pardo I. 16S-ARDRA, a Tool for Identification of Lactic Acid Bacteria Isolated from Grape Must and Wine. Syst Appl Microbiol. 2003;26(3):412-422. doi: 10.1078/072320203322497446.
Cruz-Pio LE, Poveda M, Alberto MR, Ferrer S, Pardo I. Exploring the biodiversity of two groups of Oenococcus oeni isolated from grape musts and wines: are they equally diverse? Syst Appl Microbiol. 2016;40(1):1-10. doi: 10.1016/j.syapm.2016.11.003.
Organización Mundial de la Salud (OMS). Comunicados de prensa La OMS pone al día la lista de bacterias farmacorresistentes más peligrosas para la salud humana. Disponible en: https://www.who.int/es/news/item/17-05-2024-who-updates-list-of-drug-resistant-bacteria-mostthreatening-to-human-health.
Asfeldt AM, Myrbakk T, Grimnes G, Kildal AB, Pedersen TA, Littauer P, et al. From local to national outbreak of Pseudomonas aeruginosa. Tidsskr Nor Laegeforen. 2023;143 (8). doi: 10.4045/tidsskr.23.0045.
Cameron DR, Pitton M, Oberhaensli S, Schlegel K, Prod’hom G, Blanc DS, Jakob SM, et al. Parallel Evolution of Pseudomonas aeruginosa during a Prolonged ICU-Infection Outbreak. Microbiol Spectr. 2022;10(6):e0274322. doi: 10.1128/spectrum.02743-22.
Oliver A, Rojo-Molinero E, Arca-Suarez J, Beşli Y, Bogaerts P, Cantón R. Pseudomonas aeruginosa antimicrobial susceptibility profiles, resistance mechanisms and international clonal lineages: update from ESGARS-ESCMID/ISARPAE Group. Clin Microbiol Infect. 2024;30(4):469-480. doi: 10.1016/j.cmi.2023.12.026.
Sastre-Femenia M, Fernández-Muñoz A, Gomis-Font M, Taltavull B, López-Causapé C, Arca-Suárez J, et al. Pseudomonas aeruginosa antibiotic susceptibility profiles, genomic epidemiology and resistance mechanisms: a nation-wide five-year time lapse analysis. Lancet Reg Health Eur. 2023 Sep 19;34:100736. doi: 10.1016/j.lanepe.2023.100736.
Tomás da Costa J, Lima CA., Vera-Leiva A, San Martin MI, Bello-Toledo H, Domínguez YM, et al. Carbapenemasas en aislamientos de Pseudomonas aeruginosa resistentes a carbapenémicos aisladas en hospitales de Chile. Rev Chil Infectol. 2021;38(1):81-87. doi: 10.4067/S0716-10182021000100081.
Del Barrio-Tofiño E, Lopez-Causapé C, Oliver A. Pseudomonas aeruginosa
epidemic high-risk clones and their association with horizontally-acquired b-lactamases: 2020 update. Int J Antimicrob Agents. 2020;56(6):106196. doi: 10.1016/j.ijantimicag.2020.106196.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Gina Salvador-Lujan, Liz Erika Cruz-Pio, Hedersson Calla; Damaris Rivera-Asencios; Luis Solís-Cayo; Ruth García-de-la-Guarda

This work is licensed under a Creative Commons Attribution 4.0 International License.