Mortalidad por COVID-19: desigualdades educativas y contexto socio-espacial en dos provincias de Argentina

Autores/as

  • Carlos M. Leveau Instituto de Producción, Economía y Trabajo, Universidad Nacional de Lanús. Remedios de Escalada, Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Buenos Aires, Argentina. https://orcid.org/0000-0001-6240-9811
  • Guillermo A. Velázquez Instituto de Geografía, Historia y Ciencias Sociales, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional del Centro de la Provincia de Buenos Aires, Tandil, Argentina https://orcid.org/0000-0003-0892-6572

DOI:

https://doi.org/10.17843/rpmesp.2024.412.13201

Palabras clave:

Análisis espacial, disparidades socioeconómicas en salud, mortalidad, SARS-CoV-2, geografía médica

Resumen

Con el objetivo de describir la asociación entre las características sociodemográficas y factores contextuales con la mortalidad por COVID-19, durante 2020-2021 en las provincias de Mendoza y San Juan en
Argentina se realizó un estudio de tipo ecológico, donde los factores sociodemográficos fueron la edad, el sexo y el nivel educativo y contextuales la pobreza y la urbanización a nivel departamental. Los análisis se estimaron mediante modelos jerárquicos bayesianos binomial negativos. Existieron desigualdades  educacionales independientemente del contexto socioeconómico y el nivel de urbanización. La excepción fue el grupo etario de 65 a más años durante 2021 que, independientemente del nivel educativo, mostró un riesgo de muerte por COVID-19 mayor en departamentos con niveles altos de pobreza estructural. En conclusión, la desigualdad educativa es un indicador  de desigualdad social que aumenta la vulnerabilidad para la mortalidad por COVID-19. 

Descargas

Los datos de descarga aún no están disponibles.

Referencias

Bermudi PMM, Lorenz C, de Aguiar BS, Failla MA, Barrozo LV, Chiaravalloti-Neto F. Spatiotemporal ecological study of COVID-19

mortality in the city of São Paulo, Brazil: shifting of the high mortality risk from areas with the best to those with the worst socio-economic conditions. Travel Med Infect Dis.2021;39:101945. doi: 10.1016/j.tmaid.2020.101945.

Mena G, Martinez PP, Mahmud AS, Marquet PA, Buckee CO, Santillana M. Socioeconomic status determines COVID-19 incidence and related mortality in Santiago, Chile. Science.2021;372(6545):eabg5298. doi: 10.1101/2021.01.12.21249682.

Silva J, Ribeiro-Alves M. Social inequalities and the pandemic of COVID-19: the case of Rio de Janeiro. J Epidemiol Community Health. 2021;75(10):975-979. doi: 10.1136/jech-2020-214724.

Leveau CM, Soares Bastos L. Desigualdades socio-espaciales de la mortalidad por COVID-19 en tres olas de propagación: un análisis intra-urbano en Argentina. Cad Saúde Pública. 2022;38(5):e00163921. doi: 10.1590/0102-311XES163921.

Albuquerque MV de, Ribeiro LHL. Desigualdade, situação geográfica e sentidos da ação na pandemia da COVID-19 no Brasil. Cad Saúde Pública. 2021;36(12): e00208720. doi: 10.1590/0102-311X00208720.

Anzalone AJ, Horswell R, Hendricks BM, Chu S, Hillegass WB, Beasley WH, et al. Higher hospitalization and mortality rates among

SARS‐CoV‐2‐infected persons in rural America. J Rural Health. 2023;39:39–54. doi: 10.1111/jrh.12689.

Cuadros DF, Branscum AJ, Mukandavire Z, Miller FD, MacKinnon N. Dynamics of the COVID-19 epidemic in urban and rural areas in the United States. Ann Epidemiol. 2021;59:16–20. doi: 10.1016/j.annepidem.2021.04.007.

Petrelli A, Ventura M, Di Napoli A, Mateo-Urdiales A, Pezzotti P, Fabiani M. Geographic heterogeneity of the epidemiological impact of the COVID-19 pandemic in Italy using a socioeconomic proxy-based classification of the national territory. Front Public Health. 2023;11:1143189. doi: 10.3389/fpubh.2023.1143189.

Angelici L, Sorge C, Di Martino M, Cappai G, Stafoggia M, Agabiti N, et al. Incidence of SARS-CoV-2 Infection and Related Mortality by Education Level during Three Phases of the 2020 Pandemic: A Population-Based Cohort Study in Rome. J Clin Med. 2022;11(3):877. doi: 10.3390/jcm11030877.

Chiaravalloti Neto F, Bermudi PMM, Aguiar BS de, Failla MA, Barrozo LV, Toporcov TN. Covid-19 hospital mortality using spatial hierarchical models: cohort design with 74,994 registers. Rev Saúde Pública. 2023; (suppl 1):2s. doi: 10.11606/s1518-8787.2023057004652.

Feldman JM, Bassett MT. Variation in COVID-19 mortality in the US by race and ethnicity and educational attainment. JAMA Netw Open. 2021;4(11):e2135967. doi: 10.1001/jamanetworkopen.2021.35967.

Spijker JJA, Trias-Llimós S. Cause-specific mortality in Spain during the pandemic: educational differences and its impact on life expectancy. Eur J Public Health 2023;33(3):543–9. doi: 10.1093/eurpub/ckad036.

Li SL, Pereira RH, Prete Jr CA, Zarebski AE, Emanuel L, Alves PJ, et al. Higher risk of death from COVID-19 in low-income and non-White populations of São Paulo, Brazil. BMJ Glob Health. 2021;6(4):e004959. doi: 10.1136/bmjgh-2021-004959.

Leveau CM, Hussein M, Tapia-Granados JA, Velázquez GA. Economic fluctuations and educational inequalities in premature ischemic heart disease mortality in Argentina. Cad Saúde Pública. 2023;39(5):e00181222. doi: 10.1590/0102-311xen181222.

Boletín Oficial de la República Argentina. Boletín Oficial República Argentina - Aislamiento Social Preventivo Y Obligatorio - Decreto 297/2020. 2020 [consultado el 21 de agosto de 202]. Disponible en: https://www.boletinoficial.gob.ar/detalleAviso/primera/227042

Freitas ARR, Beckedorff OA, Cavalcanti LP de G, Siqueira AM, Castro DB de, Costa CF da, et al. The emergence of novel SARS-CoV-2 variant P.1 in Amazonas (Brazil) was temporally associated with a change in the age and sex profile of COVID-19 mortality: A population based ecological study. Lancet Reg Health Am. 2021;1:100021. doi: 10.1016/j.lana.2021.100021.

Instituto Nacional de Estadística y Censos. Datos provisionales del CENSO 2022. Censo Nac Poblac Hogares Viviendas 2023. [consultado el 31 de mayo de 2023]. Disponible en: https://censo.gob.ar/index.php/datos_provisionales/.

Ministerio de Salud de la Nación. Datos Abiertos del Ministerio de Salud - Defunciones ocurridas y registradas en la República Argentina 2023. [consultado el 16 de diciembre de 2023]. Disponible en: http://datos.salud.gob.ar/.

Scruzzi GF, Aballay LR, Carreño P, Díaz Rousseau GA, Franchini CG, Cecchetto E, et al. Vacunación contra SARS-CoV-2 y su relación con enfermedad y muerte por COVID-19 en Argentina. Rev Panam Salud Pública 2023;46:e39. doi: 10.26633/RPSP.2022.39.

Huisman M, Kunst AE, Bopp M, Borgan J-K, Borrell C, Costa G, et al. Educational inequalities in cause-specific mortality in middle-aged and older men and women in eight western European populations. Lancet. 2005;365(9458):493–500. doi: 10.1016/S0140-6736(05)17867-2.

Brønnum-Hansen H, Baadsgaard M. Increasing social inequality in life expectancy in Denmark. Eur J Public Health 2007;17:585–6. doi: 10.1093/eurpub/ckm045.

Instituto Nacional de Estadística y Censos de la República Argentina. Necesidades básicas insatisfechas 2024. [consultado el 30 de noviembre de 2023]. Disponible en: https://www.indec.gob.ar/indec/web/Nivel4-Tema-4-47-156.

Tisdale H. The Process of Urbanization. Soc Forces 1942;20:311. doi: 10.2307/3005615.

Blangiardo M, Cameletti M, Baio G, Rue H. Spatial and spatio-temporal models with R-INLA. Spat Spatiotemporal Epidemiol. 2013;4:33–49. doi: 10.1016/j.sste.2012.12.001.

Riebler A, Sørbye SH, Simpson D, Rue H. An intuitive Bayesian spatial model for disease mapping that accounts for scaling. Stat Methods Med Res. 2016;25:1145–65. doi: 10.1177/0962280216660421.

Besag J, York J, Mollié A. Bayesian image restoration, with two applications in spatial statistics. Ann Inst Stat Math. 1991;43:1–20. doi: 10.1007/BF00116466.

La Nación. Coronavirus: murió un hombre de 74 años en Mendoza y hay 110 víctimas en el país 2020. [consultado el 21 de agosto de 2020]. Disponible en: https://www.lanacion.com.ar/sociedad/coronavirus-argentina-murio-hombre-74-anos-mendoza-nid2354467.

Data Driven Argentina. Reporte de movilidad de Google. Data Driven Argent 2022. [consultado el 1 de noviembre de 2022]. Disponible en: https://datadriven.com.ar/movilidad-google-argentina/.

Rodríguez López S, Bilal U, Ortigoza AF, Diez-Roux AV. Educational inequalities, urbanicity and levels of non-communicable diseases risk factors: evaluating trends in Argentina (2005–2013). BMC Public Health. 2021;21:1–12. doi:10.1186/s12889-021-11617-8.

Publicado

2024-06-21

Número

Sección

Original Breve

Cómo citar

1.
Leveau CM, Velázquez GA. Mortalidad por COVID-19: desigualdades educativas y contexto socio-espacial en dos provincias de Argentina. Rev Peru Med Exp Salud Publica [Internet]. 2024 Jun. 21 [cited 2024 Nov. 21];41(2):171-7. Available from: https://rpmesp.ins.gob.pe/index.php/rpmesp/article/view/13201