Direct amplification of Bordetella pertussis DNA purified from nasopharyngeal swabs by a low-cost, fast (60-second), and equipment-free method

Authors

DOI:

https://doi.org/10.17843/rpmesp.2022.393.10865

Keywords:

Point-of-Care Testing, Isolation & Purification, DNA, Bordetella pertussis, Cellulose, Molecular Diagnostic Techniques, Real-Time Polymerase Chain Reaction, LAMP loop-mediated isothermal amplification, Whooping Cough

Abstract

Objective. Develop and evaluate a low-cost cellulose-based method for the fast purification and direct am­plification of Bordetella pertussis DNA from nasopharyngeal swabs. Materials and methods. Different pa­rameters of the cellulose paper discs (lysis/wash buffers, number of discs and DNA elution) were evaluated. The method for DNA purification was coupled to direct amplification by real-time PCR (qPCR) and its per­formance was assessed using nasopharyngeal swabs positive (n=100) and negative (n=50) for B. pertussis in which the DNA was obtained with silica column-based method. The degree of agreement, sensitivity, spe­cificity, positive predictive value (PPV) and negative predictive value (NPV) were calculated. The feasibility of the fast method to be coupled to a loop-mediated isothermal amplification (LAMP) colorimetric assay was tested. Results. The fast method for DNA purification using a cellulose paper disc using lysis and wash buffer containing PVP-40 and Tween 20, respectively, showed to be able to purify amplifiable B. pertussis DNA. The method presented a sensitivity of 89.0% (95% CI, 80.2%-94.9%) and a specificity of 98.5% (95% CI, 92.1%-100.0%), with a good degree of agreement (Kappa=0.867; 95% CI, 0.788–0.946), compared to the reference method. PPV and NPV were 98.6% (95% CI, 92.7%-100.0%) and 88.2% (95% CI, 78.7%-94.4%), respectively. A successful amplification by LAMP was evidenced, obtaining comparable results with the si­lica column method. Conclusion. The developed method is simple, low-cost, and equipment-free for rapid (60 second) DNA purification at point-of-care and can be implemented to several molecular techniques for timely diagnosis and epidemiological studies of whooping cough.

Downloads

Download data is not yet available.

References

Yeung KHT, Duclos P, Nelson EAS, Hutubessy RCW. An update of the global burden of pertussis in children younger than 5 years: a modelling study. The Lancet Infectious Diseases. 2017;17(9):974-80. doi: 10.1016/S1473-3099(17)30390-0.

Ministerio de Salud. Alerta epidemiológica: Incremento de casos y muertes por tos ferina en el Perú 2019 [Internet] Lima: Dirección General de Epidemiologia, MINSA; 2019 [citado el 27 de enero del 2022]. Disponible en: https://www.dge.gob.pe/portal/includes/boletin/alertas2019.html.

Tatti KM, Sparks KN, Boney KO, Tondella ML. Novel Multitarget Real-Time PCR Assay for Rapid Detection of Bordetella Species in Clinical Specimens. Journal of Clinical Microbiology. 2011;49(12):4059-66. doi: 10.1128/JCM.00601-11.

Ali N, Rampazzo R de CP, Costa ADT, Krieger MA. Current Nucleic Acid Extraction Methods and Their Implications to Point-of-Care Diagnostics. BioMed Research International. 2017;2017:1-13. doi: 10.1155/2017/9306564.

Paul R, Ostermann E, Wei Q. Advances in point-of-care nucleic acid extraction technologies for rapid diagnosis of human and plant diseases. Biosensors and Bioelectronics. 2020;169:112592. doi: 10.1016/j.bios.2020.112592.

Tan SC, Yiap BC. DNA, RNA, and Protein Extraction: The Past and The Present. Journal of Biomedicine and Biotechnology. 2009;2009:1-10. doi: 10.1155/2009/574398.

Esser K-H, Marx WH, Lisowsky T. maxXbond: first regeneration system for DNA binding silica matrices. Nat Methods. 2006;3(1):i-ii. doi: 10.1038/nmeth845.

Archer MJ, Lin B, Wang Z, Stenger DA. Magnetic bead-based solid phase for selective extraction of genomic DNA. Analytical Biochemistry. 2006;355(2):285-97. doi: 10.1016/j.ab.2006.05.005.

Pearlman SI, Leelawong M, Richardson KA, Adams NM, Russ PK, Pask ME, et al. Low-Resource Nucleic Acid Extraction Method Enabled by High-Gradient Magnetic Separation. ACS Appl Mater Interfaces. 2020;12(11):12457-67. doi: 10.1021/acsami.9b21564.

Berensmeier S. Magnetic particles for the separation and purification of nucleic acids. Appl Microbiol Biotechnol. 2006;73(3):495-504. doi: 10.1007/s00253-006-0675-0.

Jangam SR, Yamada DH, McFall SM, Kelso DM. Rapid, Point-of-Care Extraction of Human Immunodeficiency Virus Type 1 Proviral DNA from Whole Blood for Detection by Real-Time PCR. J Clin Microbiol. 2009;47(8):2363-8. doi: 10.1128/JCM.r00092-09.

McFall SM, Wagner RL, Jangam SR, Yamada DH, Hardie D, Kelso DM. A simple and rapid DNA extraction method from whole blood for highly sensitive detection and quantitation of HIV-1 proviral DNA by real-time PCR. Journal of Virological Methods. 2015;214:37-42. doi: 10.1016/j.jviromet.2015.01.005.

Tang R, Yang H, Choi JR, Gong Y, Hu J, Wen T, et al. Paper-based device with on-chip reagent storage for rapid extraction of DNA from biological samples. Microchim Acta. 2017;184(7):2141-50. doi: 10.1007/s00604-017-2225-0.

Tang RH, Liu LN, Zhang SF, He XC, Li XJ, Xu F, et al. A review on advances in methods for modification of paper supports for use in point-of-care testing. Microchim Acta. 2019;186(8):521. doi: 10.1007/s00604-019-3626-z.

Mason MG, Botella JR. Rapid (30-second), equipment-free purification of nucleic acids using easy-to-make dipsticks. Nat Protoc. 2020;15(11):3663-77. doi: 10.1038/s41596-020-0392-7.

Sullivan TJ, Dhar AK, Cruz-Flores R, Bodnar AG. Rapid, CRISPR-Based, Field-Deployable Detection Of White Spot Syndrome Virus In Shrimp. Sci Rep. 2019;9(1):19702. doi: 10.1038/s41598-019-56170-y.

Zou Y, Mason MG, Wang Y, Wee E, Turni C, Blackall PJ, et al. Nucleic acid purification from plants, animals and microbes in under 30 seconds. Misteli T, editor. PLoS Biol. 2017;15(11):e2003916. doi: 10.1371/journal.pbio.2003916.

Tang W, Hu J, Zhang H, Wu P, He H. Kappa coefficient: a popular measure of rater agreement. Shanghai Arch Psychiatry. 2015;27(1):62-7. doi: 10.11919/j.issn.1002-0829.215010.

Thatcher SA. DNA/RNA Preparation for Molecular Detection. Clinical Chemistry. 2015;61(1):89-99. doi: 10.1373/clinchem.2014.221374.

Aula OP, McManus DP, Mason MG, Botella JR, Gordon CA. Rapid parasite detection utilizing a DNA dipstick. Experimental Parasitology. 2021;224:108098. doi: 10.1016/j.exppara.2021.108098.

Rezadoost MH, Kordrostami M, Kumleh HH. An efficient protocol for isolation of inhibitor-free nucleic acids even from recalcitrant plants. 3 Biotech. 2016;6(1):61. doi: 10.1007/s13205-016-0375-0.

Tanaka T, Sakai R, Kobayashi R, Hatakeyama K, Matsunaga T. Contributions of Phosphate to DNA Adsorption/Desorption Behaviors on Aminosilane-Modified Magnetic Nanoparticles. Langmuir. 2009;25(5):2956-61. doi: 10.1021/la8032397.

Rames E, Roiko A, Stratton H, Macdonald J. DNA Heat Treatment for Improving qPCR Analysis of Human Adenovirus in Wastewater. Food Environ Virol. 2017;9(3):354-7. doi: 10.1007/s12560-017-9294-4.

Landis JR, Koch GG. The Measurement of Observer Agreement for Categorical Data. Biometrics. 1977;33(1):159-74. doi: 10.2307/2529310.

Suomalainen L-R, Reunanen H, Ijäs R, Valtonen ET, Tiirola M. Freezing Induces Biased Results in the Molecular Detection of Fla-vobacterium columnare. Appl Environ Microbiol. 2006;72(2):1702-4. doi: 10.1128/AEM.72.2.1702-1704.2006.

Zhang R, Li G, Li X, Shen X, Gao Y, Wang L, et al. A rapid and sensitive recombinase aided amplification assay incorporating competitive internal control to detect Bordetella pertussis using the DNA obtained by boiling. International Journal of Infectious Diseases. 2019;86:108-13. doi: 10.1016/j.ijid.2019.06.028.

Queipo-Ortuño MI, Colmenero JDD, Macias M, Bravo MJ, Morata P. Preparation of Bacterial DNA Template by Boiling and Effect of Immunoglobulin G as an Inhibitor in Real-Time PCR for Serum Samples from Patients with Brucellosis. Clin Vaccine Immunol. 2008;15(2):293–6. doi: 10.1128/CVI.00270-07.

Xu J, Chen D, Yang Y, Gong H, Gao W, Xiao H. A one step method for isolation of genomic DNA using multi-amino modified magnetic nanoparticles. RSC Advances. 2021;11(6):3324-32. doi: 10.1039/D0RA09409A.

Yoon T, Kim S, Kim JH, Park KS. A Syringe-Based and Centrifugation-Free DNA Extraction Procedure for the Rapid Detection of Bacteria. Chemosensors. julio de 2021;9(7):167. doi: 10.3390/chemosensors9070167.

Jang WS, Lim DH, Nam J, Mihn D-C, Sung HW, Lim CS, et al. Development of a multiplex isothermal amplification molecular diagnosis method for on-site diagnosis of influenza. PLOS ONE. 2020;15(9):e0238615. doi: 10.1371/journal.pone.0238615.

Kamachi K, Toyoizumi-Ajisaka H, Toda K, Soeung SC, Sarath S, Nareth Y, et al. Development and Evaluation of a Loop-Mediated Isothermal Amplification Method for Rapid Diagnosis of Bordetella pertussis Infection. J Clin Microbiol. 2006;44(5):1899-902. doi: 10.1128/JCM.44.5.1899-1902.2006.

Juscamayta-López E, Valdivia F, Horna H, Tarazona D, Linares L, Rojas N, et al. A Multiplex and Colorimetric Reverse Transcription Loop-Mediated Isothermal Amplification Assay for Sensitive and Rapid Detection of Novel SARS-CoV-2. Front Cell Infect Microbiol. 2021;11:653616. doi: 10.3389/fcimb.2021.653616.

Kellner MJ, Ross JJ, Schnabl J, Dekens MPS, Heinen R, Grishkovskaya I, et al. A rapid, highly sensitive and open-access SARS-CoV-2 detection assay for laboratory and home testing [Internet]. Molecular Biology; 2020 jun [citado 16 de febrero de 2022]. Disponible en: http://biorxiv.org/lookup/doi/10.1101/2020.06.23.166397

Published

2022-09-30

Issue

Section

Original Article

How to Cite

1.
Juscamayta-López E, Valdivia F, Soto MP, Horna H, Nureña B. Direct amplification of Bordetella pertussis DNA purified from nasopharyngeal swabs by a low-cost, fast (60-second), and equipment-free method. Rev Peru Med Exp Salud Publica [Internet]. 2022 Sep. 30 [cited 2024 Dec. 21];39(3):312-20. Available from: https://rpmesp.ins.gob.pe/index.php/rpmesp/article/view/10865

Most read articles by the same author(s)