Correlation and concordance between the body mass index and abdominal perimeter with the waist-to-height ratio in peruvian adults aged 18 to 59 years
DOI:
https://doi.org/10.17843/rpmesp.2022.394.11932Keywords:
IMC, Obesidad, Perímetro Abdominal, Prevalencia, Peru, AdultosAbstract
Objetivo. To determine the correlation and diagnostic concordance of body mass index (BMI) and abdominal perimeter (AP) with the waist-to-height ratio (WtHR). Materials and methods. A descriptive, cross-sectional, secondary data study was conducted using the anthropometric databases of the Food and Nutrition Surveillance Survey by Adult Life Stages from 18 to 59 years old, 2017-2018, which included 1084 individuals for the geographic domains of Metropolitan Lima, other urban areas, and rural regions. The prevalence of obesity was estimated according to BMI, AP and WtHR. Lin’s correlation coefficient and Cohen’s Kappa were used to determine the correlation and concordance between the three anthropometric measurements. Results. According to the BMI, AP, and WtHR criteria, the prevalence of obesity was 26.8%, 50.4% and 85.4%, respectively; the prevalence was higher in women and in those over 30 years of age. The correlation between BMI and AP, as well as between BMI and WtHR was poor; it was moderate between BP and CCI, with differences between men and women. Furthermore, the concordance between BMI and AP was acceptable, whereas the concordance between BMI vs. BCI was mild. Conclusions. The results regarding correlation and concordance are limited and suggest that they are not interchangeable measures, so it is necessary to evaluate the adequacy of using BMI alone for the diagnosis of obesity in Peru. The limited correlation and concordance was reflected
in the different proportions of obesity that range from 26.8% to 85.4% when applying the three criteria.
Downloads
References
Organización Mundial de la Salud. Obesidad y sobrepeso. Centro de prensa. Nota descriptiva. [Internet] Génova, 2017 [Citado el 12 de junio de 2022]; Disponible en: http://www.who.int/mediacentre/factsheets/fs311/es.
NCD Risk Factor Collaboration (NCD-RisC) (2017). Worldwide trends in body-mass index, underweight, overweight, and obesity from 1975 to 2016: a pooled analysis of 2416 population-based measurement studies in 128·9 million children, adolescents, and adults. Lancet, 390(10113), 2627–2642. 10.1016/S0140-6736(17)32129-3.
Instituto Nacional de Estadística e Informática. Encuesta Nacional de Demografía y Salud. ENDES 2013 [Internet]. Lima, Perú: INEI; 2014. [Citado 22 de mayo de 2022]. Disponible en: https://www.inei.gob.pe/media/MenuRecursivo/publicaciones_digitales/Est/Endes2013/.
Instituto Nacional de Estadistica e Informática. Encuesta Nacional de Demografía y Salud ENDES 2020 [Internet]. Lima, Perú: INEI; 2021. [Citado 25 de mayo de 2022]. Disponible en: https://www.inei.gob.pe/media/MenuRecursivo/publicaciones_digitales/Est/Endes2021/.
World Health Organization (WHO). Noncommunicable diseases country profiles 2018. [Internet]. World Health Organization; 2019. [Citado 13 de mayo de 2022]. Disponible en: https://apps.who.int/iris/handle/10665/274512.
Lobstein T, Baur L, Uauy R; IASO International Obesity TaskForce. Obesity in children and young people: a crisis in public health. Obes Rev. 2004;5 Suppl 1:4-104. doi: 10.1111/j.1467-789X.2004.00133.x.
World Health Organization (WHO). Obesity: preventing and managing the global epidemic. Report of a WHO consultation. World Health Organ Tech Rep Ser [Internet] WHO; 2000. [Citado 18 de junio de 2022]. Disponible en: https://www.who.int/nutrition/publications/obesity/WHO_TRS_894/en/.
Han TS, Sattar N, Lean M. ABC of obesity. Assessment of obesity and its clinical implications. BMJ. 2006;333(7570):695–8. doi: 10.1136/bmj.333.7570.695.
Gao F, Zheng KI, Wang XB, Sun QF, Pan KH, Wang TY, et al. Obesity Is a Risk Factor for Greater COVID-19 Severity. Diabetes Care. 2020;43(7):e72-e74. doi: 10.2337/dc20-0682.
Garn SM, Leonard WR, Hawthorne VM. Three limitations of the body mass index. Am J Clin Nutr. 1986;44(6):996-7. doi: 10.1093/ajcn/44.6.996.
World Health Organization (WHO). Waist circumference and waist-hip ratio: report of a WHO Expert Consultation Geneva. [Internet] WHO; 2011 [Citado 06 de mayo de 2022]. Disponible en: https://www.who.int/nutrition/publications/obesity/WHO_report_waistcircumference_and_waisthip_ratio/en.
World Health Organization. Physical status: the use and interpretation of anthropometry. WHO Technical Report Series 854. Geneva: WHO; 1995.
Ho SY, Lam TH, Janus ED; Hong Kong Cardiovascular Risk Factor Prevalence Study Steering Committee. Waist to stature ratio is more strongly associated with cardiovascular risk factors than other simple anthropometric indices. Ann Epidemiol. 2003;13(10):683-91. doi: 10.1016/s1047-2797(03)00067-x.
Nishida C, Ko GT, Kumanyika S. Body fat distribution and noncommunicable diseases in populations: overview of the 2008 WHO Expert Consultation on Waist Circumference and Waist-Hip Ratio. Eur J Clin Nutr. 2010;64(1):2–5. doi: 10.1038/ejcn.2009.139.
Barbosa PJ, Lessa I, de Almeida Filho N, Magalhães LB, Araújo J. Criteria for central obesity in a Brazilian population: impact on metabolic syndrome. Arq Bras Cardiol. 2006 Oct;87(4):407-14. doi: 10.1590/s0066-782x2006001700003.
Pajuelo J, Torres L, Agüero R, Bernui I. Sobrepeso y obesidad en la población adulta del Perú. An Fac med. 2019;80(1):21-7. doi: 10.15381/anales. v80i1.15863.
Carrillo-Larco RM, Miranda JJ, Gilman RH, Checkley W, Smeeth L, Bernabé-Ortiz A et al. Trajectories of body mass index and waist circumference in four Peruvian settings at different level of urbanisation: the CRONICAS Cohort Study. J Epidemiol Community Health. 2018;72(5):397-403. doi: 10.1136/jech-2017-209795.
Hernández-Vásquez A, Azañedo D, Vargas-Fernández R, Aparco JP, Chaparro RM, Santero M. Cut-off points of anthropometric markers associated with hypertension and diabetes in Peru: Demographic and Health Survey 2018. Public Health Nutr. 2020;16:1-11. doi: 10.1017/S1368980020004036.
NCD Risk Factor Collaboration (NCD-RisC) (2016) A century of trends in adult human height. Elife 5, e13410.
INS/CENAN: Informe técnico de la Vigilancia Alimentaria y Nutricional por Etapas de Vida; Adultos 2017-2018: [Internet] INS; 2021 [Citado 03 de abril de 2022]. Disponible en: https://web.ins.gob.pe/sites/default/files/Archivos/cenan/van/sala_nutricional/sala_3/2021/Informe%20Tecnico%20Estado%20nutricional%20en%20adultos%20de%2018%20a%2059%20a%C3%B1os%2CVIANEV%202017-2018.pdf.
Guía técnica para la valoración nutricional antropométrica de la persona adulta. INS; 2012 [Internet]. INS; 2012 [Citado 22 de agosto de 2022] Disponible en: https://repositorio.ins.gob.pe/xmlui/bitstream/handle/INS/225/CENAN-0067.pdf?sequence=1&isAllowed=y.
Browning LM, Hsieh SD, Ashwell M. A systematic review of waist-toheight ratio as a screening tool for the prediction of cardiovascular disease and diabetes: 0·5 could be a suitable global boundary value. Nutr Res Rev. 2010;23(2):247-69. doi: 10.1017/S0954422410000144.
Landis JR, Koch GG. The Measurement of Observer Agreement for Categorical Data. Biometrics. 1977; 33(1): 159-74.
McBride G. B., “A proposal for strength-of-agreement criteria for Lin’s concordance correlation coefficient,” NIWA Client Report No. HAM2005–062 (2005), pp. 1–14.
Villca Villegas JL, Chavez-Soliz HR, Mamani Ortiz Y, Arévalo Gonzales MR. Correlación y concordancia de los índices circunferencia/cintura y circunferencia/talla con el índice de masa corporal. Gac Med Bol. 2019;42(2): 122-126.
Mahmoud I, Al-Wandi AS, Gharaibeh SS, Mohamed SA. Concordances and correlations between anthropometric indices of obesity: a systematic review. Public Health. 2021;198:301-306. doi: 10.1016/j.puhe.2021.07.042.
Wilmet G, Verlinde R, Vandevoorde J, Carnol L, Devroey D. Correlation between Body Mass Index and abdominal circumference in Belgian adults: a cross-sectional study. Rom J Intern Med. 2017;55(1):28-35. doi: 10.1515/rjim-2016-0050.
Chinedu SN, Ogunlana OO, Azuh DE, Iweala EE, Afolabi IS, Uhuegbu CC, et al. Correlation between body mass index and waist circumference in nigerian adults: implication as indicators of health status. J Public Health Res. 2013;2(2):e16. doi: 10.4081/jphr.2013.e16.
Ashwell M, Gunn P, Gibson S. Waist-to-height ratio is a better screening tool than waist circumference and BMI for adult cardiometabolic risk factors: systematic review and meta-analysis. Obes Rev. 2012;13(3):275-86. doi: 10.1111/j.1467-789X.2011.00952.x.
Lo K, Wong M, Khalechelvam P, Tam W. Waist-to-height ratio, body mass index and waist circumference for screening paediatric cardio-metabolic risk factors: a meta-analysis. Obes Rev. 2016;17(12):1258-1275. doi: 10.1111/obr.12456.
Booth ML, Hunter C, Gore CJ, Bauman A, Owen N. The relationship between body mass index and waist circumference: implications for estimates of the population prevalence of overweight. Int J Obes Relat Metab Disord. 2000;24(8):1058-61. doi: 10.1038/sj.ijo.0801359.
Myung J, Jung KY, Kim TH, Han E. Assessment of the validity of multiple obesity indices compared with obesity-related co-morbidities. Public Health Nutr. 2019;22(7):1241-1249. doi: 10.1017/S1368980019000090.
Downloads
Published
Issue
Section
License
Copyright (c) 2022 Revista Peruana de Medicina Experimental y Salud Pública
This work is licensed under a Creative Commons Attribution 4.0 International License.