Development and validation of a COVID-19 risk perception scale in Peru

Authors

DOI:

https://doi.org/10.17843/rpmesp.2023.402.12289

Keywords:

Coronavirus Infections, Perception, Psychometrics, Perú

Abstract

Objectives. To develop and validate a risk perception scale for COVID-19 (PR-COVID-19-PE) in the Peruvian population. Materials and methods. Psychometric cross-sectional study conducted in 2022. In phase 1, in order to design the scale, we carried out a theoretical review and a documentary review of scales, we also used focus groups as well as an expert panel. Phase 2 included expert judgment and a pilot test. A virtual survey was conducted among 678 Peruvian adults during phase 3. A confirmatory factor analysis was carried out as well. We used a correlational analysis (Pearson’s r) with a valid risk perception scale and the COVID-19 fear scale to determine criterion validity. Results. The PR-COVID-19-PE has two dimensions (cognitive and emotional) and showed good fit during construct validity (x2/gl=2.34, Comparative Fit Index=0.96, Tucker-Lewis Index=0.96, Root Mean Square Error of Approximation=0.05 and Standardized Root Mean-Square=0.07) and optimal internal consistency (ώ=0.88). Likewise, the PR-COVID-19-PE showed correlation with another COVID-19 risk perception scale (r=0.70, p< 0.001) and a fear of COVID-19 scale (r=0.41, p<0.001). In addition, it presents metric and scalar invariance by both sex and educational level. Conclusions. The PR-COVID-19-PE scale showed adequate reliability and content, construct and criterion validity. It is an instrument that can measure COVID-19 risk perception in similar populations. However, further studies are required for different populations.

Downloads

Download data is not yet available.

References

World Health Organization. Cumulative confirmed and probable COVID-19 cases reported by countries and territories in the Region of the Americas [Internet]. 2022. [citado el 3 de octubre de 2022]. Disponible en: https://ais.paho.org/phip/viz/COVID19Table.asp

Centers for Disease Control and Prevention. Benefits of getting a COVID-19 vaccine [Internet]. Georgia;2021 [citado el 28 de abril de 2023]. Disponible en: https://www.cdc.gov/coronavirus/2019-ncov/vaccines/vaccine-benefits.html.

Bedoya-Sommerkamp M, Medina-Ranilla J, Chau-Rodríguez V, Li-Soldevilla R, Vera-Albújar Á, García PJ. Variantes del SARS-CoV-2: epidemiología, fisiopatología y la importancia de las vacunas. Rev Peru Med Exp Salud Publica. 2021; 38(3):442-51. doi:10.17843/rpmesp.2021.383.8734.

Sunstein CR. Risk and regulation: Safety, law, and the environment. Cambridge: Cambridge University Press; 2002.

Sunstein CR. Averting catastrophe: Decision theory for COVID-19, climate change, and potential disasters of all kinds. New York: New York University Press; 2021.meron LD, Fleszar-Pavlović S, Khachikian T. Changing Behavior Using the Common-Sense Model of Self-Regulation. En: Hamilton K, Cameron LD, Hagger MS, Hankonen N, Lintunen T, editores. The Handbook of Behavior Change. Cambridge: Cambridge University Press; 2020. p. 60–76. doi:10.1017/9781108677318.005.

Cohen J. How soon will COVID-19 vaccines return life to normal? Science. 2021;371 (6531): 768-772. doi:10.1126/science.abh0618.

Rudisill C. How do we handle new health risks? Risk perception, optimism, and behaviors regarding the H1N1 virus. Journal of Risk Research. 2013;16(8):959-80. doi:10.1080/13669877.2012.761271.

Yang JZ, Chu H. Who is afraid of the Ebola outbreak? The influence of discrete emotions on risk perception. Journal of Risk Research. 2018;21(7):834-53. doi:10.1080/13669877.2016.1247378.

Alicea-Planas J, Trudeau JM, Vásquez Mazariegos WF. COVID-19 Risk Perceptions and Social Distancing Practice in Latin America. Hisp Health Care Int. 2021;19(4):254-9. doi:10.1177/1540415320985141.

Taghrir MH, Borazjani R, Shiraly R. COVID-19 and Iranian Medical Students; A Survey on Their Related-Knowledge, Preventive Behaviors and Risk Perception. Arch Iran Med. 2020;23(4):249-54. doi:10.34172/aim.2020.06.

Capone V, Donizzetti AR, Park MS-A. Validation and Psychometric Evaluation of the COVID-19 Risk Perception Scale (CoRP): a New Brief Scale to Measure Individuals’ Risk Perception. Int J Ment Health Addict. 2021:1-14. doi:10.1007/s11469-021-00660-6.

Yıldırım M, Güler A. Factor analysis of the COVID-19 Perceived Risk Scale: A preliminary study. Death Stud. 2022;46(5):1065-72. doi: 10.1080/07481187.2020.1784311.

Dryhurst S, Schneider CR, Kerr J, Freeman ALJ, Recchia G, van der Bles AM, et al. Risk perceptions of COVID-19 around the world. Journal of Risk Research. 2020;23(7-8):994-1006. doi:10.1080/13669877.2020.1758193.

van der Linden S. The social-psychological determinants of climate change risk perceptions: Towards a comprehensive model. Journal of Environmental Psychology. 2015;41:112-24. doi:10.1016/j.jenvp.2014.11.012.

Fernández-Castillo E, Fernández-Fleites Z, Broche-Pérez Y, Otero-Ramos IM, Martín-González R, Ruiz AL. The Risk Perception COVID-19 Scale (RP-COVID19-S): Initial Validation and Its Relationship with Gender and Age in a Cuban Population Sample. Int J Ment Health Addict. 2021:1-21. doi: 10.1007/s11469-021-00672-2.

Matar-Khalil S, Ortiz Barrero MJ, González-Campos J. Diseño y validación de un cuestionario para evaluar la percepción de riesgo de contagio de COVID-19 en población colombiana. Rev Peru Med Exp Salud Publica. 2021;38(4):512–20. doi:10.17843/rpmesp.2021.384.9298.

Monge-Rodríguez FS, Jiang H, Zhang L, Alvarado-Yepez A, Cardona-Rivero A, Huaman-Chulluncuy E, et al. Psychological Factors Affecting Risk Perception of COVID-19: Evidence from Peru and China. Int J Environ Res Public Health. 2021,18(12):6513. doi: 10.3390/ijerph18126513.

Cano-Gómez LC, Castillo-Tejada RD, Mena-Ordoñez SS. Percepción de riesgo, automedicación, mitos y creencias relacionados con COVID-19 entre jefes de hogar peruanos. Salud UIS. 2022;54:22003. doi:10.18273/saluduis.54.e:22003.

Quiñones-Laveriano DM, Guillen-Vidarte H, Benavides-Luyo C, De La Cruz-Vargas JA. Perception of risk to COVID-19 and mental health indicators in workers of a Peruvian hospital: An analytical cross-sectional study. Medwave. 2022;22(02):e8708. doi:10.5867/medwave.2022.02.002513.

Ministerio de Educación. En el Perú hay 47 lenguas originarias que son habladas por cuatro millones de personas [Internet]. Lima: Ministerio de Educación; 2017 [citado el 28 de abril de 2023]. Disponible en: http://www.minedu.gob.pe/n/noticia.php?id=42914.

Shao W, Hao F. Confidence in political leaders can slant risk perceptions of COVID-19 in a highly polarized environment. Soc Sci Med. 2020;261:113235. doi: 10.1016/j.socscimed.2020.113235.

Montero I, León O. A guide for naming research studies in Psychology. International Journal of Clinical and Health Psychology [Internet]. 2007 [citado el 3 de octubre de 2022];7(3):847-62. Disponible en: https://www.redalyc.org/pdf/337/33770318.pdf.

El Peruano. Comenzó cuarta ola de covid-19 [Internet]. 27 de junio de 2022 [citado el 11 de octubre de 2022]. Disponible en: https://elperuano.pe/noticia/163361-comenzo-cuarta-ola-de-covid-19.

Muñiz Fernández J, Fonseca Pedrero E. Diez pasos para la construcción de un test. Psicothema. 2019;31(1):7-16. doi:10.7334/psicothema2018.291.

Alegria KE, Fleszar-Pavlović SE, Ngo DD, Beam A, Halliday DM, Hinojosa BM, et al. The Role of Risk Perceptions and Affective Consequences in COVID-19 Protective Behaviors. Int J Behav Med. 2021;28(6):801-7. doi:10.1007/s12529-021-09970-4.

Hernández-Nieto R. Instrumentos de Recolección de Datos en Ciencias Sociales y Ciencias Biomédicas: Validez y Confiabilidad. Diseño y Construcción. Normas y Formatos. Mérida: Universidad Los Andes, 2011.

Kline R. Principles and Practice of Structural Equation Modeling. Fourth Edition. New York: Guilford, 2015.

Byrne BM. Factor analytic models: Viewing the structure of an assessment instrument from three perspectives. J Pers Assess. 2005;85(1):17-32. doi: 10.1207/s15327752jpa8501_02.

Worthington RL, Whittaker TA. Scale Development Research: A Content Analysis and Recommendations for Best Practices. The Counseling Psychologist. 2006;34(6):806-38. doi: 10.1177/0011000006288127.

Hu L, Bentler PM. Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural Equation Modeling: A Multidisciplinary Journal. 1999;6(1):1-55. doi: 10.1080/10705519909540118.

Bentler PM. Comparative fit indexes in structural models. Psychol Bull. 1990;107(2):238-46. doi: 10.1037/0033-2909.107.2.238.

Bozdogan H. Model selection and Akaike’s Information Criterion (AIC): The general theory and its analytical extensions. Psychometrika. 1987;52(3):345-70. doi: 10.1007/BF02294361.

Cheung GW, Rensvold RB. Evaluating goodness-of-fit indexes for testing measurement invariance. Structural Equation Modeling: A Multidisciplinary Journal. 2002;9(2):233-55. doi: 10.1207/S15328007SEM0902_5.

Chen FF. Sensitivity of goodness of fit indexes to lack of measurement invariance. Structural Equation Modeling: A Multidisciplinary Journal. 2007;14(3):464-504. doi: 10.1080/10705510701301834.

Huarcaya-Victoria J, Villarreal-Zegarra D, Podestà A, Luna-Cuadros MA. Psychometric Properties of a Spanish Version of the Fear of COVID-19 Scale in General Population of Lima, Peru. Int J Ment Health Addict. 2022;20(1):249-262. doi:10.1007/s11469-020-00354-5.

Published

2023-06-30

Issue

Section

Original Article

How to Cite

1.
Zeladita-Huaman JA, Franco-Chalco E, Zegarra-Chapoñan R, Iguiñiz-Romero R, Amemiya-Hoshi I. Development and validation of a COVID-19 risk perception scale in Peru. Rev Peru Med Exp Salud Publica [Internet]. 2023 Jun. 30 [cited 2025 Jan. 15];40(2):170-8. Available from: https://rpmesp.ins.gob.pe/index.php/rpmesp/article/view/12289

Most read articles by the same author(s)