Development of a model for predicting major infection following pediatric heart surgery

Authors

  • Alfredo M. Jauregui Facultad de Medicina, Universidad Peruana de Ciencias Aplicadas (UPC), Lima, Perú. Médico cirujano
  • Paula V. Urrunaga Facultad de Medicina, Universidad Peruana de Ciencias Aplicadas (UPC), Lima, Perú. Médico cirujano
  • Juan A. Gonzales Facultad de Medicina, Universidad Peruana de Ciencias Aplicadas (UPC), Lima, Perú. Médico cirujano
  • Luis E. Silva Facultad de Medicina, Universidad Peruana de Ciencias Aplicadas (UPC), Lima, Perú. estudiante de Medicina
  • Vinay Pasupuleti ProEd Communications, Inc., Cleveland, Ohio, Estados Unidos. Médico cirujano doctor en Epidemiología
  • Ewout W. Steyerberg Departamento de Salud Pública, Erasmus MC, Rotterdam, Países Bajos. Departamento de Estadística Médica, Leiden University Medical Center, Leiden, Países Bajos. doctor en Epidemiología
  • Adrian V. Hernandez Facultad de Medicina, Universidad Peruana de Ciencias Aplicadas (UPC), Lima, Perú. Escuela de Farmacia, University of Connecticut, Storrs, Connecticut, Estados Unidos. Médico cirujano doctor en Epidemiología
  • Eduardo W. Silva Departamento de Cirugía, Unidad Postoperatoria Cardiovascular, Instituto Nacional de Salud del Niño (INSN), Lima, Perú. Médico cirujano

DOI:

https://doi.org/10.17843/rpmesp.2020.374.5064

Keywords:

Cardiac Surgical Procedures, Cardiopulmonary bypass, Postoperative complication, Infections, Prediction model

Abstract

Objective: The aim of this study was to develop a risk prediction model for major postoperative infection (MPI) after pediatric heart surgery and to validate the model of the Society of Thoracic Surgeons (STS). Materials and methods: We analyzed a retrospective cohort of 1,025 children who underwent heart surgery with cardiopulmonary bypass (CPB) from 2000 to 2010. We used a logistic regression model, which was validated. Results: Of the 1,025 patients, 59 (5.8%) had at least one episode of MPI (4.8% had sepsis, 1% had mediastinitis, 0% had endocarditis). Hospital mortality (63% vs. 13%; p < 0.001), as well as duration of postoperative ventilation (301.6 vs. 34.3 hours; p < 0.001) and intensive care unit stay (20.9 vs. 5.1 days; p < 0.001) were higher in patients with MPI. The predictive factors found were age, sex, weight, cyanotic heart disease, RACHS-1 3-4, Ross-modified functional class IV, previous hospital stay, and previous history of mechanical ventilation. The proposed model had a c-statistic of 0.80 (95% CI: 0.74-0.86) and was considered as clinically useful. The STS model showed a c-statistic of 0.78 (95% CI: 0.71-0.84) and a Hosmer-Lemeshow of 18.2 (P = 0.020). A comparison between the two models was made using an accurate Fisher test. Conclusion: A model with good performance and calibration was developed to preoperatively identify children at high risk for severe infection after cardiac surgery with CPB. The STS model was also validated and was found to have a moderate discrimination performance.

Downloads

Download data is not yet available.

Author Biography

  • Eduardo W. Silva, Departamento de Cirugía, Unidad Postoperatoria Cardiovascular, Instituto Nacional de Salud del Niño (INSN), Lima, Perú. Médico cirujano

    Infección

    Cirugia cardiaca pediatrica

     

Published

2020-11-30

Issue

Section

Original Article

How to Cite

1.
Jauregui AM, Urrunaga PV, Gonzales JA, Silva LE, Pasupuleti V, Steyerberg EW, et al. Development of a model for predicting major infection following pediatric heart surgery. Rev Peru Med Exp Salud Publica [Internet]. 2020 Nov. 30 [cited 2024 Apr. 23];37(4):672-80. Available from: https://rpmesp.ins.gob.pe/index.php/rpmesp/article/view/5064

Most read articles by the same author(s)