Revisión exploratoria sobre la evidencia de cultivos andinos con efecto hipoglucemiante y de sus componentes bioactivos
DOI:
https://doi.org/10.17843/rpmesp.2023.404.12672Palabras clave:
Alimentos, Hipoglucemiantes, Ciencias de la Nutrición, Ecosistema Andino, RevisiónResumen
La diabetes es una enfermedad crónica que afecta a varias personas en todo el mundo. Algunos cultivos
domesticados y compartidos en el continente sudamericano se han reportado como una fuente
prometedora de componentes bioactivos con posibles efectos hipoglucemiantes. En esta revisión se tuvo como objetivo explorar y sintetizar la evidencia existente en la literatura científica sobre el efecto hipoglucemiante de los cultivos andinos y sus componentes bioactivos. Se incluyó distintos tipos de estudios primarios de tres bases de datos (Scopus, Pubmed y Web of Science) durante junio de 2023, sin restricciones, por medio del lenguaje controlado y no controlado, según la estrategia PICO. Se encontró 30 estudios realizados entre 2005 y 2022 que demostraron tener efecto hipoglucemiante, mediante la inhibición enzimática en estudios in vitro y reducción significativa de la glucosa en estudios preclínicos y ensayos clínicos. Dicho efecto fue atribuido a diferentes componentes bioactivos que se identificaron con mecanismos independientes sobre la reducción de la glucosa e inhibición enzimática. Los cultivos más utilizados fueron Smallanthus sonchifolius (9/30), Lupinus mutabilis (5/30) y Solanum tuberosum
(4/30). De los cuales se asignó el efecto hipoglucémico a los componentes bioactivos, como polifenoles,
flavonoides, subclases de ácidos fenólicos, fructanos, alcaloides, hidrolizados, antocianinas y fibra dietética.
A pesar de los resultados alentadores en distintos tipos de estudio, para que estos sean considerados como tratamientos seguros y efectivos, se requiere investigaciones adicionales que profundicen en los
mecanismos de acción, comparen su eficacia con los tratamientos convencionales y evalúen su seguridad
a largo plazo.
Descargas
Referencias
Ganasegeran K, Hor CP, Jamil MFA, Loh HC, Noor JM, Hamid NA, et al. A Systematic Review of the Economic Burden of Type 2 Diabetes in Malaysia. Int J Environ Res Public Health. 2020;17(16):5723. doi: 10.3390/ijerph17165723.
Herman WH. The Global Burden of Diabetes: An Overview. En: Dagogo-Jack S, editor. Diabetes Mellitus in Developing Countries and
Underserved Communities [Internet]. Cham: Springer International Publishing; 2017 [citado el 24 de julio de 2023]. p. 1–5. doi: 10.1007/978-3-319-41559-8_1.
Raghav SS, Kumar B, Sethiya NK, Kaul A. A Mechanistic Insight on Phytoconstituents Delivering Hypoglycemic Activity: A Comprehensive Overview. Future Pharmacol. 2022;2(4):511–46. doi: 10.3390/futurepharmacol2040032.
Martín del Campo-Rayas P, Valdez Miramontes EH, Reyes Castillo Z. Annona muricata as Possible Alternative in the Treatment of Hyperglycemia: A Systematic Review. J Med Food. 2022;25(3):219–29. doi:10.1089/jmf.2021.0058.
Virgen-Carrillo CA, Martínez Moreno AG, Valdés Miramontes EH. Potential Hypoglycemic Effect of Pomegranate Juice and Its Mechanism of Action: A Systematic Review. J Med Food. 2020;23(1):1–11. doi: 10.1089/jmf.2019.0069.
Tricco AC, Lillie E, Zarin W, O’Brien KK, Colquhoun H, Levac D, et al. PRISMA Extension for Scoping Reviews (PRISMA-ScR): Checklist and Explanation. Ann Intern Med. 2018;169(7):467–73. doi: 10.7326/M18-0850.
Tapia ME, Fries AM. Guía de campo de los cultivos andinos [Internet]. Perú: FAO y ANPE; 2007 p. 209. Disponible en: https://www.fao.org/3/ai185s/ai185s.pdf.
Insituto de Estudios Andinos Don Pablo Groeber (IDEAN). ¿Qué es la cordillera de los Andes? [Internet]. [citado el 8 de junio de 2023]. Disponible en: http://www.idean.gl.fcen.uba.ar/los-andes/.
Widowati W, Tjokropranoto R, Wahyudianingsih R, Tih F, Sadeli L, Kusuma HSW, et al. Antidiabetic potential yacon (Smallanthus sonchifolius (Poepp.) H. Rob.) leaf extract via antioxidant activities, inhibition of α-glucosidase, α-amylase, G-6-Pase by in vitro assay. J Rep Pharm Sci. 2021;10(2):247–55. doi: 10.4103/jrptps.JRPTPS_3_21.
Fuentealba C, Gálvez L, Cobos A, Olaeta JA, Defilippi BG, Chirinos R, et al. Characterization of main primary and secondary metabolites and in vitro antioxidant and antihyperglycemic properties in the mesocarp of three biotypes of Pouteria lucuma. Food Chem. 2016;190:403–11. doi: 10.1016/j.foodchem.2015.05.111.
Pinto MDS, Ranilla LG, Apostolidis E, Lajolo FM, Genovese MI, Shetty K. Evaluation of antihyperglycemia and antihypertension potential of native Peruvian fruits using in vitro models. J Med Food. 2009;12(2):278–91. doi: 10.1089/jmf.2008.0113.
Russo D, Valentão P, Andrade PB, Fernandez EC, Milella L. Evaluation of Antioxidant, Antidiabetic and Anticholinesterase Activities of Smallanthus sonchifolius Landraces and Correlation with Their Phytochemical Profiles. Int J Mol Sci. 2015;16(8):17696–718. doi: 10.3390/ijms160817696.
Ranilla LG, Apostolidis E, Genovese MI, Lajolo FM, Shetty K. Evaluation of indigenous grains from the Peruvian Andean region for antidiabetes and antihypertension potential using in vitro methods. J Med Food. 2009;12(4):704–13. doi: 10.1089/jmf.2008.0122.
Kalita D, Holm DG, LaBarbera DV, Petrash JM, Jayanty SS. Inhibition of α-glucosidase, α-amylase, and aldose reductase by potato polyphenolic compounds. PLoS ONE [Internet]. 2018;13(1). doi: 10.1371/journal.pone.01910.
Coronado-Olano J, Repo-Carrasco-Valencia R, Reategui O, Toscano E, Valdez E, Zimic M, et al. Inhibitory activity against α-amylase and α-glucosidase by phenolic compounds of quinoa (Chenopodium quinoa Willd.) and cañihua (Chenopodium pallidicaule Aellen) from the Andean region of Peru. Pharmacogn J. 2021;13(4):896–901. doi: 10.5530/pj.2021.13.115.
Chirinos R, Cerna E, Pedreschi R, Calsin M, Aguilar-Galvez A, Campos D. Multifunctional in vitro bioactive properties: Antioxidant, antidiabetic, and antihypertensive of protein hydrolyzates from tarwi (Lupinus mutabilis Sweet) obtained by enzymatic biotransformation. Cereal Chem. 2021;98(2):423–33. doi: 10.1002/cche.10382.
Ranilla LG, Kwon Y-I, Apostolidis E, Shetty K. Phenolic compounds, antioxidant activity and in vitro inhibitory potential against key enzymes relevant for hyperglycemia and hypertension of commonly used medicinal plants, herbs and spices in Latin America. Bioresour Technol. 2010;101(12):4676–89. doi: 10.1016/j.biortech.2010.01.093.
Tan M, Chang S, Liu J, Li H, Xu P, Wang P, et al. Physicochemical Properties, Antioxidant and Antidiabetic Activities of Polysaccharides
from Quinoa (Chenopodium quinoa Willd.) Seeds. Mol Basel Switz. 2020;25(17):3840. doi: 10.3390/molecules25173840.
Zhang Q, Gonzalez de Mejia E, Luna-Vital D, Tao T, Chandrasekaran S, Chatham L, et al. Relationship of phenolic composition of selected purple maize (Zea mays L.) genotypes with their anti-inflammatory, anti-adipogenic and anti-diabetic potential. Food Chem. 2019;289:739–50. doi: 10.1016/j.foodchem.2019.03.116.
Martínez Díaz JD, Ortega Chacón V, Muñoz Ronda FJ. El diseño de preguntas clínicas en la práctica basada en la evidencia: modelos de formulación. Enferm Glob. 2016;15(43):431–8.
Ouzzani M, Hammady H, Fedorowicz Z, Elmagarmid A. Rayyan—a web and mobile app for systematic reviews. Syst Rev. 2016;5:210. doi: 10.1186/s13643-016-0384-4.
Zambrana S, Lundqvist LCE, Veliz V, Catrina S-B, Gonzales E, Östenson C-G. Amaranthus caudatus Stimulates Insulin Secretion in Goto-Kakizaki Rats, a Model of Diabetes Mellitus Type 2. Nutrients. 2018;10(1):94. doi: 10.3390/nu10010094.
Girija K, Lakshman K, Udaya C, Sabhya SG, Divya T. Anti-diabetic and anti-cholesterolemic activity of methanol extracts of three species of Amaranthus. Asian Pac J Trop Biomed. 2011;1(2):133–8. doi: 10.1016/S2221-1691(11)60011-7.
Strugała P, Dzydzan O, Brodyak I, Kucharska AZ, Kuropka P, Liuta M, et al. Antidiabetic and antioxidative potential of the blue Congo variety of purple potato extract in streptozotocin-induced diabetic rats. Molecules [Internet]. 2019;24(17). doi: 10.3390/molecules24173126.
Asokan SM, Wang T, Su W-T, Lin W-T. Antidiabetic effects of a short peptide of potato protein hydrolysate in STZ-induced diabetic mice. Nutrients [Internet]. 2019;11(4). doi: 10.3390/nu11040779.
Herowati R, Saputri ADS, Wijayanti T, Widodo GP. Antihyperglycemic and diabetic wound healing activity of smallanthus sonchifolius leaves extract. En: Nandiyanto A.B.D., Abdullah A.G., editores. MATEC Web Conf [Internet]. EDP Sciences; 2018 [citado el 18 de abril de 2018]. doi: 10.1051/matecconf/201819707001.
Singh N, Kamath V, Rajini PS. Attenuation of hyperglycemia and associated biochemical parameters in STZ-induced diabetic rats by dietary supplementation of potato peel powder. Clin Chim Acta. 2005;353(1–2):165–75. doi: 10.1016/j.cccn.2004.10.016.
Dionisio A, de Carvalho-Silva L, Vieira N, Goes T, Wurlitzer N, Borges M, et al. Cashew-apple (Anacardium occidentale L.) and yacon (Smallanthus sonchifolius) functional beverage improve the diabetic state in rats. FOOD Res Int. 2015;77:171–6. doi: 10.1016/j.foodres.2015.07.020.
Valderrama IH, Echeverry SM, Rey DP, Rodríguez IA, Silva FRMB, Costa GM, et al. Extract of Calyces from Physalis peruviana Reduces Insulin Resistance and Oxidative Stress in Streptozotocin-Induced Diabetic Mice. Pharmaceutics. 2022;14(12):2758. doi: 10.3390/pharmaceutics14122758.
Gopika R, Senthilkumar G, Karthy ES, Panneerselvam A. Hyperglycemic activity of chenopodium quinoa in diabetic rats and its potential health benefits – functional superfood for todays world. Int J Curr Res Rev. 2021;13(5):47–53. doi: 10.31782/IJCRR.2021.13502.
Genta SB, Cabrera WM, Mercado MI, Grau A, Catalán CA, Sánchez SS. Hypoglycemic activity of leaf organic extracts from Smallanthus sonchifolius: Constituents of the most active fractions. Chem Biol Interact. 2010;185(2):143–52. doi: 10.1016/j.cbi.2010.03.004.
Vargas-Tineo OW, Segura-Muñoz DM, Becerra-Gutiérrez LK, Amado-Tineo JP, Silva-Díaz H. Hypoglycemic effect of Moringa oleifera (moringa) compared with Smallanthus sonchifolius (yacon) on Rattus norvegicus with induced diabetes mellitus. Rev Peru Med Exp Salud Publica. 2020;37(3):478–84. doi: 10.17843/rpmesp.2020.373.5275.
Park J, Yang J, Hwang B, Yoo B, Han K. Hypoglycemic Effect of Yacon Tuber Extract and Its Constituent, Chlorogenic Acid, in Streptozotocin-Induced Diabetic Rats. Biomol Ther. 2009;17(3):256–62. doi: 10.4062/biomolther.2009.17.3.256.
Oliveira GO, Braga CP, Fernandes AAH. Improvement of biochemical parameters in type 1 diabetic rats after the roots aqueous extract of yacon [Smallanthus sonchifolius (Poepp.& Endl.)] treatment. Food Chem Toxicol Int J Publ Br Ind Biol Res Assoc. 2013;59:256–60. doi: 10.1016/j.fct.2013.05.050.
Zambrana S, Lundqvist LCE, Mamani O, Catrina S-B, Gonzales E, Östenson C-G. Lupinus mutabilis Extract Exerts an Anti-Diabetic Effect by Improving Insulin Release in Type 2 Diabetic Goto-Kakizaki Rats. Nutrients. 2018;10(7):933. doi: 10.3390/nu10070933.
Ezzat S, Abdallah H, Yassen N, Radwan R, Mostafa E, Salama M, et al. Phenolics from Physalis peruviana fruits ameliorate streptozotocin-induced diabetes and diabetic nephropathy in rats via induction of autophagy and apoptosis regression. Biomed Pharmacother. 2021;142. doi: 10.1016/j.biopha.2021.111948.
Dos Santos KC, Bueno BG, Pereira LF, Francisqueti FV, Braz MG, Bincoleto LF, et al. Yacon (Smallanthus sonchifolius) Leaf Extract Attenuates Hyperglycemia and Skeletal Muscle Oxidative Stress and Inflammation in Diabetic Rats. Evid Based Complement Alternat Med [Internet]. 2017;2017. doi: 10.1155/2017/6418048.
Fornasini Salvador MV, Abril-Ulloa SV, Beltrán Carreño JP, Villacrés E, Cuadrado-Merino L, Robalino F, et al. Efficacy of a Lupinus mutabilis Sweet snack as complement to conventional type 2 diabetes mellitus treatment. Nutr Hosp. 2019;36(4):905–11. doi: 10.20960/nh.02590.
Baldeon M, Castro J, Villacres E, Narvaez L, Fornasini M. Hypoglycemic effect of cooked lupinus mutabilis and its purified alkaloids in subjects with type-2 diabetes. Nutr Hosp. 2012;27(4):1261–6. doi: 10.3305/nh.2012.27.4.5761.
Fornasini M, Castro J, Villacrés E, Narváez L, Villamar MP, Baldeón ME. Hypoglycemic effect of Lupinus mutabilis in healthy volunteers and subjects with dysglycemia. Nutr Hosp. 2012;27(2):425–33. doi: 10.1590/S0212-16112012000200012.
Murakami A. Non-specific protein modifications may be novel mechanism underlying bioactive phytochemicals. J Clin Biochem Nutr.
;62(2):115–23. doi: 10.3164/jcbn.17-113.
Naomi R, Bahari H, Yazid MD, Othman F, Zakaria ZA, Hussain MK. Potential Effects of Sweet Potato (Ipomoea batatas) in Hyperglycemia and Dyslipidemia—A Systematic Review in Diabetic Retinopathy Context. Int J Mol Sci. 2021;22(19):10816. doi: 10.3390/ijms221910816.
Tavakoli-Rouzbehani OM, Faghfouri AH, Anbari M, Papi S, Shojaei FS, Ghaffari M, et al. The effects of Cuminum cyminum on glycemic parameters: A systematic review and meta-analysis of controlled clinical trials. J Ethnopharmacol. 2021;281:114510. doi: 10.1016/j.jep.2021.114510.
Sohouli MH, Haghshenas N, Hernández-Ruiz Á, Shidfar F. Consumption of sesame seeds and sesame products has favorable effects on blood glucose levels but not on insulin resistance: A systematic review and meta-analysis of controlled clinical trials. Phytother Res. 2022;36(3):1126–34. doi: 10.1002/ptr.7379.
Cui W, Luo K, Xiao Q, Sun Z, Wang Y, Cui C, et al. Effect of mulberry leaf or mulberry leaf extract on glycemic traits: a systematic review and meta-analysis. Food Funct. 2023;14(3):1277–89. doi: 10.1039/D2FO02645G.
Nova E, Redondo-Useros N, Martínez-García RM, Gómez-Martínez S, Díaz-Prieto LE, Marcos A. Potential of Moringa oleifera to Improve Glucose Control for the Prevention of Diabetes and Related Metabolic Alterations: A Systematic Review of Animal and Human Studies. Nutrients. 2020;12(7):2050. doi:10.3390/nu12072050.
Pedreschi R, Campos D, Noratto G, Chirinos R, Cisneros-Zevallos L. Andean yacon root (Smallanthus sonchifolius Poepp. Endl) fructooligosaccharides as a potential novel source of prebiotics. J Agric Food Chem. 2003;51(18):5278–84. doi: 10.1021/jf0344744.
Bibas Bonet ME, Meson O, de Moreno de LeBlanc A, Dogi CA, Chaves S, Kortsarz A, et al. Prebiotic effect of yacon (Smallanthus sonchifolius) on intestinal mucosa using a mouse model. Food Agric Immunol. 2010;21(2):175–89. doi: 10.1080/09540100903563589.
Campos D, Betalleluz-Pallardel I, Chirinos R, Aguilar-Galvez A, Noratto G, Pedreschi R. Prebiotic effects of yacon (Smallanthus sonchifolius Poepp. & Endl), a source of fructooligosaccharides and phenolic compounds with antioxidant activity. Food Chem. 2012;135(3):1592–9. doi: 10.1016/j.foodchem. 2012.05.088.
Ghorbani A, Rashidi R, Shafiee-Nick R. Flavonoids for preserving pancreatic beta cell survival and function: A mechanistic review. Biomed Pharmacother. 2019;111:947–57. doi: 10.1016/j.biopha.2018.12.127.
Chen L, Gnanaraj C, Arulselvan P, El-Seedi H, Teng H. A review on advanced microencapsulation technology to enhance bioavailability of phenolic compounds: Based on its activity in the treatment of Type 2 Diabetes. Trends Food Sci Technol. 2019;85:149–62. doi: 10.1016/j.tifs.2018.11.026.
Singh SS, Pandey SC, Srivastava S, Gupta VS, Patro B. Chemistry and medicinal properties of tinospora cordifolia (GUDUCHI). Indian J
Pharmacol. 2003;35(2):83.
Leclère C, Champ M, Boillot J, Guille G, Lecannu G, Molis C, et al. Role of viscous guar gums in lowering the glycemic response after a solid meal. Am J Clin Nutr. 1994;59(4):914–21. doi: 10.1093/ajcn/59.4.914.
Medina Hoyos A. Guía de manejo del cultivo de maíz morado (Zea mays L.). 1. a. Perú: Instituto Nacional de Innovación Agraria-INIA; 2022. 156 p.
Descargas
Publicado
Número
Sección
Licencia
Derechos de autor 2023 Diego Díaz Núñez, Boris Rivera-Torres
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.