Antioxidant role of L-carnitine in an experimental model of oxidative stress induced by increased fructose consumption

Authors

  • Marilin Maguiña-Alfaro Universidad Nacional Mayor de San Marcos, Facultad de Medicina, Centro de Investigación de Bioquímica y Nutrición, Lima, Perú. Médica cirujana http://orcid.org/0000-0002-8318-9843
  • Silvia Suárez-Cunza Universidad Nacional Mayor de San Marcos, Facultad de Medicina, Centro de Investigación de Bioquímica y Nutrición, Lima, Perú. química farmacéutica, doctora en Farmacia y Bioquímica http://orcid.org/0000-0001-7848-0102
  • Luis Salcedo-Valdez Universidad Nacional Mayor de San Marcos, Facultad de Medicina, Centro de Investigación de Bioquímica y Nutrición, Lima, Perú. biólogo http://orcid.org/0000-0002-5597-3024
  • María Soberón-Lozano Universidad Nacional Mayor de San Marcos, Facultad de Medicina, Centro de Investigación de Bioquímica y Nutrición, Lima, Perú. bióloga, doctora en Ciencia de Alimentos http://orcid.org/0000-0001-5063-1407
  • Kelly Carbonel-Villanueva Universidad Nacional Mayor de San Marcos, Facultad de Medicina, Centro de Investigación de Bioquímica y Nutrición, Lima, Perú. tecnóloga médica, magíster en Bioquímica http://orcid.org/0000-0003-0038-3243
  • Rosa Carrera-Palao Universidad Nacional Mayor de San Marcos, Facultad de Medicina, Instituto de Patología, Lima, Perú médica patóloga forense, magíster en Investigación y Docencia Universitaria http://orcid.org/0000-0002-2507-7077

DOI:

https://doi.org/10.17843/rpmesp.2020.374.4733

Keywords:

L-carnitine, Oxidative stress, Fructose, Antioxidants, Insulin, Malondialdehyde Superoxide Dismutase, Glycemia

Abstract

Objectives: To evaluate the role of L-carnitine (LC) on fructose-induced oxidative stress in Holtzman
rats. Materials and methods: An experimental study was carried out during 56 days, in patients assigned
to 4 groups: control, control+LC, fructose and fructose+LC. Patients in the fructose group received treatment
during 56 days, and those in the LC groups were treated during the last 28 days. Fructose was given
on demand and LC was administered orally at a dose of 500 g/kg/24 h. Lipid peroxidation (MDA), superoxide
dismutase activity, free LC and mitochondrial and post-mitochondrial proteins were measured in
liver tissue. Glycemia, insulin and the homeostasis model assessment of insulin resistance (HOMA-IR)
were measured in blood plasma. We measured insulin concentration and studied the histology of pancreatic
tissue. Results: LC treatment showed a decrease (p < 0.05) of MDA when compared to the control
group (21.73 ± 5.36 nmol/g tissue vs. 64.46 ± 7.87 nmol/g tissue). Mitochondrial and post-mitochondrial
proteins increased (p < 0.05) in comparison to the control group; pancreatic insulin also increased when
compared to the control (341.8 ± 42.3 μUI/ml vs. 70.1 ± 9.6 μUI/ml, p<0.05). The role of LC against fructose-
induced oxidative stress did not show any decrease of MDA, but decreased (p < 0.05) SOD Cu/Zn
activity (9.39 ± 1.5 USOD/mg protein vs. 13.52 ± 1.5 USOD/mg protein). We observed that LC improves
HOMA-IR in blood plasma. Histological analysis of the pancreas showed that the presence of LC increased
the number and size of the islets of Langerhans. Conclusions: LC favors changes in the oxidative
metabolism and it also contributes to glycemic homeostasis when fructose is consumed.

Downloads

Download data is not yet available.

Published

2020-11-17

Issue

Section

Original Article

How to Cite

1.
Maguiña-Alfaro M, Suárez-Cunza S, Salcedo-Valdez L, Soberón-Lozano M, Carbonel-Villanueva K, Carrera-Palao R. Antioxidant role of L-carnitine in an experimental model of oxidative stress induced by increased fructose consumption. Rev Peru Med Exp Salud Publica [Internet]. 2020 Nov. 17 [cited 2025 Jan. 21];37(4):662-71. Available from: https://rpmesp.ins.gob.pe/index.php/rpmesp/article/view/4733

Most read articles by the same author(s)