Effects of fat sources on liver characteristics and intestinal morphometry in an early-life animal model

Authors

DOI:

https://doi.org/10.17843/rpmesp.2023.404.12804

Keywords:

Plant Oils, Fatty Acids, Unsaturated, Hepatocytes

Abstract

We aimed to determine the effect of the consumption of three sources of fatty acids on the relative weight,
macroscopic and microscopic characteristics of the liver, and intestinal morphometry in an early-life animal model. Seventy-six randomly distributed chicks received one of the diets (T1: 97.0% basal diet (BD) + 3.0% inert material, T2: 97.0% BD + 3.0% partially hydrogenated vegetable shortening, T3: 97.0% BD + 3.0% quinoa oil, and T4: 97.0% BD + 3.0% fish oil) until the seventh day of life; samples were then extracted in order to be analyzed. We found that the animals that consumed quinoa oil (T3) or fish oil (T4) had favorable results associated to lower liver weight and better absorption of nutrients at intestinal level due to higher values in the hair length and crypt depth ratio, in comparison to partially hydrogenated vegetable shortening (T2). In conclusion, quinoa oil constitutes a healthy option for consumption and an alternative source to fish oil.

Downloads

Download data is not yet available.

References

Curi-Quinto K, Ortiz-Panozo E, López de Romaña D. Malnutrition in all its forms and socio-economic disparities in children under 5 years of age and women of reproductive age in Peru. Public Health Nutr. 2020;23(S1):s89-s100. doi: 10.1017/S136898001900315X.

Fondo de las Naciones Unidas para la Infancia (UNICEF), Centro Nacional de Alimentación y Nutrición (CENAN), Organización Panamericana de la Salud (OPS), Programa Mundial de Alimentos (WFP). Resumen ejecutivo Análisis del panorama del sobrepeso y la obesidad infantil y adolescente en Perú: Recomendaciones de políticas para enfrentarlos [Internet]. Lima, Peru: UNICEF, CENAN, OPS, WFP; 2023 [citado 10 de octubre de 2023]. Disponible en: https://www.unicef.org/peru/nutricion/informes/analisis-panorama-sobrepeso-obesidad-infantil-adolescente-peru.

Orsso CE, Colin E, Field CJ, Madsen KL, Prado CM, Haqq AM. Adipose Tissue Development and Expansion from the Womb to Adolescence: An Overview. Nutrients. 2020;12(9):2735. doi: 10.3390/nu12092735.

Krolevets TS, Livzan MA, Syrovenko MI. Liver fibrosis in nonalcoholic fatty liver disease: the role of adipokines and noninvasive assessment of the intestinal barrier. Russ J Evid-Based Gastroenterol. 2023;12(2):46-54. doi: 10.17116/dokgastro20231202146.

Wree A, Kahraman A, Gerken G, Canbay A. Obesity Affects the Liver – The Link between Adipocytes and Hepatocytes. Digestion. 2010;83(1- 2):124–33. doi: 10.1159/000318741.

Zakaria Z, Othman ZA, Nna VU, Mohamed M. The promising roles of medicinal plants and bioactive compounds on hepatic lipid metabolism in the treatment of non-alcoholic fatty liver disease in animal models: molecular targets. Arch Physiol Biochem. 2021:1-17. doi: 10.1080/13813455.2021.1939387.

Kotronen A, Yki H. Fatty Liver: A Novel Component of the Metabolic Syndrome. Arterioscler Thromb Vasc Biol. 2008;28(1):27-38. doi: 10.1161/ATVBAHA.107.147538.

Torchon ET, Das S, Beckford RC, Voy BH. Enriching the starter diet in n-3 polyunsaturated fatty acids reduces adipocyte size in broiler chicks. Curr Dev Nutr, 2017;1(11):1–5.

Beckford RC, Howard SJ, Das S, Farmer AT, Campagna SR, Yu J, et al. Maternal consumption of fish oil programs reduced adiposity in broiler chicks. Sci Rep. 2017;7:13129. doi: 10.1038/s41598-017-13519-5.

Nassar F. Poultry as an Experimental Animal Model in Medical Research and Pharmaceutical Industry. Biomed J Sci Technol Res. 2018;2(3):2597-2600. doi: 10.26717/BJSTR.2018.2.000751.

Piekarski A, Greene E, Anthony NB, Bottje W, Dridi S. Crosstalk between autophagy and obesity: Potential use of avian model. Adv Food Technol Nutr Sci Open J. 2015;1(1):32-7. doi: 10.17140/AFTNSOJ-1-106.

Ayala I, García B, Doménech-Asensi G, Castells T, Valdes MP. Use of the chicken as an experimental animal model in atherosclerosis. Poult Avian Biol Rev. 2005;16(3):151-9. doi: 10.3184/147020605783437968.

Gutiérrez Zorrilla IM. Influencia del consumo de ácidos grasos de tres fuentes dietarias sobre el tejido adiposo en edad temprana en pollos [tesis de maestría]. Lima: Maestría en Nutrición, Universidad Nacional Agraria La Molina; 2022. Disponible en: https://repositorio.lamolina.edu.pe/handle/20.500.12996/5977.

Mozaffarian D, Micha R, Wallace S. Effects on coronary heart disease of increasing polyunsaturated fat in place of saturated fat: a systematic review and meta-analysis of randomized controlled trials. PLoS Med. 2010;7(3):e1000252. doi: 10.1371/journal.pmed.1000252.

Martín-Castillo A, García-Pérez B, Ayalac I, Adánez G, Ortegae JV, Sánchez MT, et al. Evaluación macroscópica y microscópica del efecto de la atorvastatina sobre la progresión-regresión de la esteatosis hepática en un modelo aviar. Clin Invest Arterioscl. 2005;17(6):270–6.

Caruso M, Demonte A. Histomorfometria do intestino delgado de ratos submetidos a diferentes fontes protéicas. Alim Nutr. 2005;16(2):131–6.

Wallace M, Metalloa CM. Tracing insights into de novo lipogenesis in liver and adipose tissues. Semin Cell Dev Biol. 2020;108:65–71. doi: 10.1016/j.semcdb.2020.02.012.

Hassan S, Attia A, Abd El H, Abd El HH. Impact of increasing dietary oil concentrations with a constant energy level on the tolerance of broiler chickens to a high ambient temperature. Rev Mex Cienc Pecu. 2018;9(2). doi: 10.22319/rmcp.v9i2.4377.

Hodson L, Rosqvist F, Parry SA. The influence of dietary fatty acids on liver fat content and metabolism. Proc Nutr Soc. 2020;79:30–41. doi: 10.1017/S0029665119000569.

Roger K. Enfermedad del hígado en grande y pequeños rumiantes. Jornadas Uruguayas de Buiatría. Universidad de Queensland SST. Lucía, Australia Q 4067. 2002.

Kalupahana NS, Lakmini B, Naima M. Omega-3 Fatty Acids and Adipose Tissue: Inflammation and Browning, Annu Rev Nutr. 2020;40:25-49. doi: 10.1146/annurev-nutr-122319-034142.

Imafidon KE, Okunrobo LO. Study on biochemical indices of liver function tests of albino rats supplemented with three sources of vegetable oils. Nigerian Journal of Basic and Applied Science. 2012;19(2):105-10.

Adabi S, Hajibabaei A, Casey NH, Bayraktaroglu AG. The effects of various dietary vegetable oil sources on villi morphology and liver aldehydes in young layers. S Afr J Anim Sci. 2016;46(1):63-9. doi: 10.4314/sajas.v46i1.8.

Xu ZR, Hu CH, Xia MS, Zhan XA, Wang MQ. Effects of dietary fructooligosaccharide on digestive enzymeactivities, intestinal microflora, and morphology of malebroilers. Poult Sci. 2003;82(6):1030–36. doi: 10.1093/ps/82.6.1030.

Ye Z, Cao C, Li R, Cao P, Li Q, Liu Y. Lipid composition modulates the intestine digestion rate and serum lipid status of different edible oils: a combination of in vitro and in vivo studies. Food & Function. 2019;3. doi: 10.1039/c8fo01290c.

Berillis P, Martin S, Mente E. Histological methods to assess the effect of diet and a single meal on the fish oil liver and intestine of Rainbow trout: Fishmeal and replacement with plant protein and oil. Trends in Fisheries and Aquatic Animal Health. 2017;262-76.

Mani V, Hollis JH, Gabler NK. Dietary oil composition differentially modulates intestinal endotoxin transport and postprandial endotoxemia. Nutrition & Metabolism. 2013;10:6. doi: 10.1186/1743-7075-10-6.

Published

2023-12-18

Issue

Section

Brief Report

How to Cite

1.
Gutiérrez Zorrilla IM, Bernuy-Osorio ND, Zea Mendoza O, Yabar Villanueva EF, Vílchez-Perales C. Effects of fat sources on liver characteristics and intestinal morphometry in an early-life animal model. Rev Peru Med Exp Salud Publica [Internet]. 2023 Dec. 18 [cited 2024 Feb. 28];40(4):459. Available from: https://rpmesp.ins.gob.pe/index.php/rpmesp/article/view/12804