Genes resistentes a carbapenémicos y colistina aislados en Musca domestica proveniente de un basural cercano a un hospital de Lima
DOI:
https://doi.org/10.17843/rpmesp.2024.412.13257Palabras clave:
Moscas Domésticas, Farmacorresistencia Microbiana, Colistina, CarbapenémicosResumen
El objetivo fue determinar la presencia de genes de resistencia a carbapenémicos y resistencia plasmídica a colistina (mcr-1) en bacterias aisladas de Musca domestica en un basural cercano a un hospital de Lima, Perú. Las bacterias con resistencia fenotípica a los carbapénemicos se aislaron en medio CHROMagar mSuperCARBATM y el perfil de resistencia a colistina se realizó mediante el método de elución de discos de colistina. La detección de genes blaKPC, blaNDM, blaIMP, blaOXA-48, blaVIM y mcr-1 se realizó mediante
PCR convencional. El perfil de susceptibilidad antimicrobiana se determinó mediante el sistema automatizado MicroScan. Las bacterias con resistencia fenotípica a carbapenémicos fueron 31/38 cepas y a colistina fueron 26/38 cepas con una concentración inhibitoria mínima ≥ 4 μg/ml. Finalmente, se identificaron siete cepas bacterianas con genes de resistencia a carbapenémicos (OXA-48 Y KPC) y una cepa bacteriana con resistencia plasmídica a colistina (mcr-1). Una cepa de Escherichia coli presentó tres genes de resistencia: KPC, OXA-48 y mcr-1.
Descargas
Referencias
Clifford K, Desai D, Prazeres da Costa C, Meyer H, Klohe K, Winkler AS, Rahman T, Islam T, Zaman MH. Antimicrobial resistance in livestock and poor quality veterinary medicines. Bull World Health Organ. 2018;96(9):662-664. doi: 10.2471/BLT.18.209585.
Sacsaquispe-Contreras R, Bailón-Calderón H. Identificación de genes de resistencia a carbapenémicos en enterobacterias de hospitales de Perú, 2013-2017. Rev Perú Med Exp Salud Publica. 2018; 35(2): 259-264. doi: 10.17843/rpmesp.2018.352.3829.
Meletis G. Carbapenem resistance: Overview of the problem and future perspectives. Ther Adv Infect Dis. 2016;3(1):15-21. doi:
1177/2049936115621709.
Tängdén T, Giske CG. Global dissemination of extensively drug-resistant carbapenemase-producing Enterobacteriaceae: clinical perspectives on detection, treatment and infection control. J Intern Med. 2015;277(5):501-512. doi: 10.1111/joim.12342.
Liu YY, Wang Y, Walsh TR, Yi LX, Zhang R, Spencer J, et al. Emergence of plasmid-mediated colistin resistance mechanism MCR-1
in animals and human beings in China: A microbiological and molecular biological study. Lancet Infect Dis. 2016;16(2):161–8. doi:
1016/S1473-3099(15)00424-7.
Ugarte R, Olivo J, Corso A, Pasteran F, Albornoz E, Sahuanay. Resistencia a colistín mediado por el gen mcr-1 identificado en cepas de Escherichia coli y Klebsiella pneumoniae. Primeros reportes en el Perú. An Fac Med. 2018;79(3):213-7. doi: 10.15381/anales.v79i3.15313.
A Alsudani A, Lateef Al-Awsi GR. Role of the Housefly as a Biological Vector for Bacteria and Fungi at Some Slaughterhouses. Pak J Biol Sci. 2022;25(4):353-357. doi: 10.3923/pjbs.2022.353.357.
Zhang J, Wang J, Chen L, Yassin AK, Kelly P, Butaye P, Li J, Gong J, Cattley R, Qi K, Wang C. Housefly (Musca domestica) and Blow Fly
(Protophormia terraenovae) as Vectors of Bacteria Carrying Colistin Resistance Genes. Appl Environ Microbiol. 2017;84(1):e01736-17. doi:
1128/AEM.01736-17.
Carramaschi IN, de C Queiroz MM, da Mota FF, Zahner V. First Identification of bla NDM-1 Producing Escherichia coli ST 9499 Isolated from Musca domestica in the Urban Center of Rio de Janeiro, Brazil. Curr Microbiol. 2023;80(9):278. doi: 10.1007/s00284-023-03393-y.
Moon RD. Muscidae. En: Durden LA, Mullen GR. editors. Medical and Veterinary Entomology. United States: Academic Press; 2019.
p:345-366. Disponible en: https://web.natur.cuni.cz/parasitology/vyuka/LekEnt_CV/Mullen%20and%20Durden%20-%20Medical%20and%20Veterinary%20Entomology%202019.pdf.
CLSI. Clinical and Laboratory Standards Institute. M100: Performance Standards for Antimicrobial Susceptibility Testing. [En línea]. Disponible en: https://clsi.org/standards/products/microbiology/documents/m100/.
Pasteran FG, Otaegui L, Guerriero L, Radice G, Maggiora R, Rapoport M, et al. Klebsiella pneumoniae Carbapenemase-2, Buenos Aires, Argentina. Emerg Infect Dis. 2008;14(7):1178-80. doi: 10.3201/eid1407.070826.
Pasteran F, Albornoz E, Faccone D, Gomez S, Valenzuela C, Morales M, Estrada P, Valenzuela L, Matheu J, Guerriero L, Arbizú E, Calderón Y, Ramon-Pardo P, Corso A. Emergence of NDM-1-producing Klebsiella pneumoniae in Guatemala. J Antimicrob Chemother. 2012;67(7):1795-7. doi: 10.1093/jac/dks101.
Protocolo de PCR para la detección del gen imp en aislamientos de bacilos gran-negativos. Servicio de Antimicrobianos, Instituto Nacional de Enfermedades Infecciosas (ANLIS) “Dr. Carlos G. Malbrán”. Disponible en: http://antimicrobianos.com.ar/ATB/wp-content/uploads/2021/01/Detecci%C3%B3n-IMP1.pdf.
Hashemi AB, Nakhaei Moghaddam M, Forghanifard MM, Yousefi E. Detection of blaOXA -10 and blaOXA -48 genes in Pseudomonas aeruginosa clinical isolates by multiplex PCR. J Med Microbiol Infect Dis. 2021;9(3):142-147. doi: 10.52547/JoMMID.9.3.142.
Miriagou V, Tzelepi E, Gianneli D, Tzouvelekis LS. Escherichia coli with a self-transferable, multiresistant plasmid coding for metallo-beta-lactamase VIM-1. Antimicrob Agents Chemother. 2003;47(1):395-7. doi: 10.1128/AAC.47.1.395-397.2003.
Iglesias Parro M. Resistencia a Colistina en enterobacterias zoonóticas [tesis doctoral]. Extremadura: Universidad de Extremadura; 2018: Disponible en: https://dehesa.unex.es/flexpaper/template.html?path=https://dehesa.unex.es/bitstream/10662/8565/1/TDUEX_2018_Iglesias_Parro.pdf#page=1.
Isam-Eldeen IIB, AlaaEldin YMH, Mohamed AIH, Eltayib HA-A. Isolation of potentially pathogenic bacteria from Musca domestica captured in hospitals and slaughterhouses, Khartoum state, Sudan. African J Microbiol Res. 2022;16(2):76–81.
Béjar V, Chumpitaz J, Pareja E, Valencia E, Huamán A, Sevilla C, et al. Musca domestica como vector mecánico de bacterias enteropatógenas en mercados y basurales de Lima y Callao. Rev Perú Med Exp Salud Publica. 2006;23(1):39-43.
Escandón-Vargas K, Reyes S, Gutiérrez S, Villegas MV. The epidemiology of carbapenemases in Latin America and the Caribbean, Expert Rev Anti Infect Ther. 2017;15(3):277-297. doi: 10.1080/14787210.2017.1268918.
Velásquez J, Hernández R, Pamo O, Candiotti M, Pinedo Y, Sacsaquispe R, et al. Klebsiella pneumoniae resistente a los carbapenemes.
Primer caso de carbapenemasa tipo KPC en Perú. Rev Soc Peru Med Interna. 2013;26(4):192-196.
Villanueva-Cotrina F., Condori DM, Gomez TO, Yactayo KM, Barron-Pastor H. First isolates of OXA-48-like Carbapenemase-pro-ducing Enterobacteriaceae in a specialized Cancer Center. Infect Chemother. 2022;54(4):765-773. doi: 10.3947/ic.2022.0135.
Wadaskar B, Kolhe R, Waskar V, Budhe M, Kundu K, Chaudhari S. Detection of antimicrobial resistance in Escherichia coli and Salmonella isolated from flies trapped at animal and poultry farm premises. J. Anim. Res. 2021;11(3): 341-350. doi: 10.30954/2277-940X.03.2021.1.
Pillpe Calle J. Detección de gen de resistencia antimicrobiana mcr-1 en enterobacterias aisladas de carne de pollo en expendio, de mercados de abasto de Santiago de Surco, Lima [tesis de pregrado]. Lima: Universidad Mayor de San marcos, Facultad de Medicina Veterinaria, Escuela Profesional de Medicina Veterinaria; 2023: Disponible en: https://cybertesis.unmsm.edu.pe/bitstream/handle/20.500.12672/19763/Pillpe_cj.pdf?sequence=1&isAllowed=y.
Descargas
Publicado
Número
Sección
Licencia
Derechos de autor 2024 Miguel A. Alarcón-Calle, Víctor L. Osorio-Guevara, Ramsés Salas-Asencios, José Yareta, Pool Marcos-Carbajal, María E. Rodrigo-Rojas
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.