Neutralization of SARS-CoV-2 (lineage B.1.1) by hyperimmune llama (Lama glama) serum in Vero cell culture

Authors

  • Verónica Yaniro Laboratorio de Referencia Nacional de Biotecnología y Biología Molecular, Centro Nacional de Salud Pública, Instituto Nacional de Salud, Lima, Perú. https://orcid.org/0000-0003-1449-7137
  • Silvia Capristano Laboratorio de Referencia Nacional de Biotecnología y Biología Molecular, Centro Nacional de Salud Pública, Instituto Nacional de Salud, Lima, Perú. https://orcid.org/0000-0002-8119-0621
  • Henri Bailon Laboratorio de Referencia Nacional de Biotecnología y Biología Molecular, Centro Nacional de Salud Pública, Instituto Nacional de Salud, Lima, Perú. https://orcid.org/0000-0002-9593-6092
  • Juan Lévano Laboratorio de Referencia Nacional de Biotecnología y Biología Molecular, Centro Nacional de Salud Pública, Instituto Nacional de Salud, Lima, Perú. https://orcid.org/0000-0001-6378-0006
  • Marco Galarza Laboratorio de Referencia Nacional de Biotecnología y Biología Molecular, Centro Nacional de Salud Pública, Instituto Nacional de Salud, Lima, Perú. https://orcid.org/0000-0002-6547-2354
  • David García Laboratorio de Referencia Nacional de Biotecnología y Biología Molecular, Centro Nacional de Salud Pública, Instituto Nacional de Salud, Lima, Perú. https://orcid.org/0000-0003-0708-4764
  • Omar Cáceres Laboratorio de Referencia Nacional de Biotecnología y Biología Molecular, Centro Nacional de Salud Pública, Instituto Nacional de Salud, Lima, Perú. https://orcid.org/0000-0003-1529-2475
  • Carlos Padilla Laboratorio de Referencia Nacional de Biotecnología y Biología Molecular, Centro Nacional de Salud Pública, Instituto Nacional de Salud, Lima, Perú. https://orcid.org/0000-0002-0562-0431
  • Harrison Montejo Laboratorio de Referencia Nacional de Biotecnología y Biología Molecular, Centro Nacional de Salud Pública, Instituto Nacional de Salud, Lima, Perú. https://orcid.org/0000-0003-0162-6198
  • Paquita García Laboratorio de Referencia Nacional de Infecciones Metaxénicas Virales, Centro Nacional de Salud Pública, Instituto Nacional de Salud, Lima, Perú. https://orcid.org/0000-0002-2185-5038
  • Mary Celis Laboratorio de Referencia Nacional de Virus Respiratorios, Centro Nacional de Salud Pública, Instituto Nacional de Salud, Lima, Perú https://orcid.org/0009-0001-6334-077X
  • Silvia Seraylan Centro Nacional de Producción de Biológicos, Instituto Nacional de Salud, Lima, Perú. https://orcid.org/0000-0002-7042-3741
  • Yessica Garayar Centro Nacional de Producción de Biológicos, Instituto Nacional de Salud, Lima, Perú. https://orcid.org/0009-0008-1071-365X
  • Miryam Palomino Laboratorio de Referencia Nacional de Infecciones Metaxénicas Virales, Centro Nacional de Salud Pública, Instituto Nacional de Salud, Lima, Perú. https://orcid.org/0000-0002-1236-4114

DOI:

https://doi.org/10.17843/rpmesp.2023.403.12509

Keywords:

Coronavirus, SARS-CoV-2, Lama glama, Neutralization Tests, COVID-19 Serotherapy

Abstract

Objective. To evaluate the serological antibody response of a llama (Lama glama) to SARS-CoV-2 (B.1.1 lineage)
immunization and the neutralizing capacity of hyperimmune llama serum against SARS-CoV-2 virus
(B.1.1 lineage) in Vero cells. Materials and methods. A llama was immunized with inactivated SARS-CoV-2 (B.1.1 lineage). Serum samples were analyzed to evaluate the level of antibodies by ELISA, as well as reactivity to SARS-CoV-2 antigens by Western Blot. In addition, viral neutralization in cell cultures was assessed by the Plate Reduction Neutralization Test (PRNT). Results. Seroreactivity increased in the immunized llama from week 4 onwards. Antibody titers were the highest after the seventh immunization booster. Western blot results confirmed the positive ELISA findings, and immune serum antibodies recognized several viral proteins. The neutralization assay (PRNT) showed visible viral neutralization, which was in accordance with the ELISA and Western Blot results. Conclusions. The findings suggest that hyperimmune llama serum could constitute a source of therapeutic antibodies against SARS-CoV-2 infections (lineage B.1.1), and should be studied in
further research.

Downloads

Download data is not yet available.

References

Organización Panamericana de la Salud. La COVID-19 es ahora un problema de salud establecido y persistente [Internet]. OPS/O.

MS; 2023 [citado el 14 de junio de 2023]. Disponible en: https://www.paho.org/es/noticias/8-5-2023-covid-19-es-ahora-problema-salud-establecido-persistente#:~:text=a%20reunión%20es%20que%20la,los%20programas%20de%20salud%20regulares.

Ng Kee Kwong KC, Mehta PR, Shukla G, Mehta AR. COVID-19, SARS and MERS: A neurological perspective. J Clin Neurosci. 2020;77:13-16. doi: 10.1016/j.jocn.2020.04.

Zhang XY, Huang HJ, Zhuang DL, Nasser MI, Yang MH, Zhu P, et al. Biological, clinical and epidemiological features of COVID-19, SARS and MERS and AutoDock simulation of ACE2. Infect Dis Poverty. 2020;9(1):99. doi: 10.1186/s40249-020-00691-6.

Biancolella M, Colona VL, Mehrian-Shai R, Watt JL, Luzzatto L, Novelli G, et al. COVID-19 2022 update: transition of the pandemic to the endemic phase. Hum Genomics. 2022;16(1):19. doi: 10.1186/s40246-022-00392-1.

Wang M, Cao R, Zhang L, Yang X, Liu J, Xu M, et al. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res. 2020;30(3):269-271. doi: 10.1038/s41422-020-0282-0.

Zhang Q, Wang Y, Qi C, Shen L, Li J. Clinical trial analysis of 2019-nCoV therapy registered in China. J Med Virol. 2020;92:540-545. doi: 10.1002/jmv.25733.

Nascimento Junior JAC, Santos AM, Quintans-Júnior LJ, Walker CIB, Borges LP, Serafini MR. SARS, MERS and SARS-CoV-2 (COVID-19) treatment: a patent review. Expert Opin Ther Pat. 2020;30(8):567-579. doi: 10.1080/13543776.2020.1772231.

Liu STH, Lin HM, Baine I, Wajnberg A, Gumprecht JP, Rahman F, et al. Convalescent plasma treatment of severe COVID-19: a propensity score-matched control study. Nat Med. 2020;26(11):1708-1713. doi: 10.1038/s41591-020-1088-9.

Duan K, Liu B, Li C, Zhang H, Yu T, Qu J, et al. Effectiveness of convalescent plasma therapy in severe COVID-19 patients. Proc Natl Acad Sci U S A. 2020;117(17):9490-9496. doi: 10.1073/pnas.2004168117.

Jorda A, Kussmann M, Kolenchery N, Siller-Matula JM, Zeitlinger M, Jilma B, et al. Convalescent Plasma Treatment in Patients with Covid-19: A Systematic Review and Meta-Analysis. Front Immunol. 2022;13:817829. doi: 10.3389/fimmu.2022.817829.

Sapsutthipas S, Leong PK, Akesowan S, Pratanaphon R, Tan NH, Ratanabanangkoon K. Effective equine immunization protocol for production of potent poly-specific antisera against Calloselasma rhodostoma, Cryptelytrops albolabris and Daboia siamensis. PLoS Negl Trop Dis. 2015;9(3):e0003609. doi: 10.1371/journal.pntd.0003609.

Gutiérrez JM, León G, Burnouf T. Antivenoms for the treatment of snakebite envenomings: The road ahead. Biologicals. 2011;39(3):129-142. doi: 10.1016/j.biologicals.2011.02.005.

Pan X, Zhou P, Fan T, Wu Y, Zhang J, Shi X, et al. Immunoglobulin fragment F(ab’)2 against RBD potently neutralizes SARS-CoV-2 in vitro. Antiviral Res. 2020;182:104868. doi: 10.1016/j.antiviral. 2020.104868.

Bailon Calderon H, Colque Alave EG, Yaniro Coronel VO, Padilla Rojas C, Galarza Pérez M, Cáceres Rey OA, et al. Neutralización de la actividad letal del veneno de serpiente Bothrops atrox por suero hiperinmune de llama (lama glama). Rev Peru Med Exp Salud Pública. 2020;37(3):446-53. doi: 10.17843/rpmesp.2020.373.4597.

Bewley KR, Coombes NS, Gagnon L, McInroy L, Baker N, Shaik I, et al. Quantification of SARS-CoV-2 neutralizing antibody by wild-type plaque reduction neutralization, microneutralization and pseudotyped virus neutralization assays. Nat Protoc. 2021;16(6):3114-3140. doi: 10.1038/s41596-021-00536-y.

Brouwer PJM, Caniels TG, van der Straten K, Snitselaar JL, Aldon Y, Bangaru S, et al. Potent neutralizing antibodies from COVID-19 patients define multiple targets of vulnerability. Science. 2020;369(6504):643-650. doi: 10.1126/science.abc5902.

Chi X, Yan R, Zhang J, Zhang G, Zhang Y, Hao M, et al. A neutralizing human antibody binds to the N-terminal domain of the Spike protein of SARS-CoV-2. Science. 2020;369(6504):650-655. doi: 10.1126/science.abc6952.

Darvish M, Ebrahimi SA, Shahbazzadeh D, Bagheri KP, Behdani M, Shokrgozar MA. Camelid antivenom development and potential in vivo neutralization of Hottentotta saulcyi scorpion venom. Toxicon. 2016;113:70-5. doi: 10.1016/j.toxicon.2016.01.063.

Meddeb-Mouelhi F, Bouhaouala-Zahar B, Benlasfar Z, Hammadi M, Mejri T, Moslah M, et al. Immunized camel sera and derived immunoglobulin subclasses neutralizing Androctonus australis hector scorpion toxins. Toxicon. 2003;42(7):785-91. doi: 10.1016/j.toxicon.2003.10.021.

Patterson EI, Prince T, Anderson ER, Casas-Sanchez A, Smith SL, Cansado-Utrilla C, et al. Methods of Inactivation of SARS-CoV-2 for Downstream Biological Assays. J Infect Dis. 2020;222(9):1462-1467. doi: 10.1093/infdis/jiaa507.

Fadaei A. Viral Inactivation with Emphasis on SARS-CoV-2 Using Physical and Chemical Disinfectants. ScientificWorldJournal. 2021;2021:9342748. doi: 10.1155/2021/9342748.

He Y, Zhou Y, Siddiqui P, Jiang S. Inactivated SARS-CoV vaccine elicits high titers of spike protein-specific antibodies that block receptor binding and virus entry. Biochem Biophys Res Commun. 2004;325(2):445-52. doi: 10.1016/j.bbrc.2004.10.052.

Huo J, Zhao Y, Ren J, Zhou D, Duyvesteyn HME, Ginn HM, et al. Neutralization of SARS-CoV-2 by Destruction of the Prefusion Spike. Cell Host Microbe. 2020;28(3):445-454.e6. doi: 10.1016/j.chom.2020.06.010.

Imai M, Iwatsuki-Horimoto K, Hatta M, Loeber S, Halfmann PJ, Nakajima N, et al. Syrian hamsters as a small animal model for SARS-CoV-2 infection and countermeasure development. Proc Natl Acad Sci U S A. 2020;117(28):16587-16595. doi: 10.1073/pnas.2009799117.

Sia SF, Yan LM, Chin AWH, Fung K, Choy KT, Wong AYL, et al. Pathogenesis and transmission of SARS-CoV-2 in golden hamsters. Nature. 2020;583(7818):834-838. doi: 10.1038/s41586-020-2342-5.

Esparza TJ, Martin NP, Anderson GP, Goldman ER, Brody DL. High affinity nanobodies block SARS-CoV-2 spike receptor binding domain interaction with human angiotensin converting enzyme. Sci Rep. 2020;10(1):22370. doi: 10.1038/s41598-020-79036-0.

Hanke L, Vidakovics Perez L, Sheward DJ, Das H, Schulte T, Moliner-Morro A, et al. An alpaca nanobody neutralizes SARS-CoV-2 by blocking receptor interaction. Nat Commun. 2020;11(1):4420. doi: 10.1038/s41467-020-18174-5.

Kim C, Ryu DK, Lee J, Kim YI, Seo JM, Kim YG, et al. A therapeutic neutralizing antibody targeting receptor binding domain of SARS-CoV-2 spike protein. Nat Commun. 2021;12(1):288. doi: 10.1038/s41467-020-20602-5.

Rogers TF, Zhao F, Huang D, Beutler N, Burns A, He WT, et al. Isolation of potent SARS-CoV-2 neutralizing antibodies and protection from disease in a small animal model. Science. 2020;369(6506):956-963. doi: 10.1126/science.abc7520.

U.S. Food and Drug Administration. Conozca sus opciones de tratamiento contra el COVID-19 [Internet]. FDA; 2023 [citado el 14 de junio de 2023]. Disponible en: https://www.fda.gov/consumers/articulos-para-el-consumidor-en-espanol/conozca-sus-opciones-de-tratamiento-contra-el-covid-19.

Published

2023-09-28

Issue

Section

Original Article

How to Cite

1.
Yaniro V, Capristano S, Bailon H, Lévano J, Galarza M, García D, et al. Neutralization of SARS-CoV-2 (lineage B.1.1) by hyperimmune llama (Lama glama) serum in Vero cell culture. Rev Peru Med Exp Salud Publica [Internet]. 2023 Sep. 28 [cited 2025 Jan. 21];40(3):287-96. Available from: https://rpmesp.ins.gob.pe/index.php/rpmesp/article/view/12509

Most read articles by the same author(s)

1 2 > >>